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PREFACE

The uunt;nta of this edition are mainly the same as those of the
Previous cne with the necessary corrections and the addition of one of
the biggest structures designed by the author, namely the bulk urea
sbtore shown in Fig. VIII-O.

It has further been found more convenlient to replace chapter XT
on Foundations by & mew chapter, publiuhéd for the first time, on
Folded Plate Structures. A simple sysematic method of design, based
on the fundamentals of mechanics and theory of plane structures has
been shown. Te illustrate the application of the method, the design
and details of three different folded-plate structures worked out by
the author are included e this chapter. The chapter on Foundations
is in.the author's textbook on "Pundamentals of Reinforced and Pre-

streased Concrets".

The author hopes that this book remains of banefit to struectu-
ral engineers, graduate and nndargrndun‘bu studants of the nngj.naﬂm.g
faculties and higher institutes in the design of rainrurnnd conorete

itruuturan of common use,

farch 1978 M. Hilal
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I-1IFETRODUODCT ION

The object of a hall is to cover a limited area that has to be
utilised for a certain purpose such as meetinga, sports, stprace, ex-
hibitions, industry, ... etc. )

Reinforced concrete halls and their supporting elements must sa-
tisfy the following conditionsa:

a) The disposition, layout, lightineg, wventilation, dArainage and in
general the architectural composition must satisfy the reqguirements
of the owner for an economie, efficient and gocd-locking structure.

b) The =1..-.|:-u:u='l:u.r¢ and its structural members should ba so designed
and constructed that they are able, with appropriate pafety, to with-
stand all the loads, superimposed loads and other actionsa ('su:h as:
differential settlements and temperature changes ) liable to occur
during construction and in use.

The object of the design calculations is to guarantes sufficient
safety against the structure being rendered 'unfit' for service.

A structure is considered to have become ‘unfit’ when one or more
of its members ceases to perform the function for which 1t was dssign-
ed, owing teo failure , buckling due to elastic, plastic or dynamic in-
stability, excessive cracking, excessive elastic or plastic deforma-
tions... etc,

e) The structural supporting elements must be so chosen that they
give the most economic solution within the available possible means.

d) The initial and maintainance cost must be the minimum possible.

&) The structure should preferably show clearly the statical system
adopted and it is genperally recommended not to hide the supporting ele-
ments. The proportions and dimensions chosen according to a conmvenient
statical system are geperally the most convenient and bast leooking.

The structures dealt with in the following chapters are supposed
to be of reinforced concrete. The general principles glves bere can-
not be applied directly to prestressed concrete structures without the

necessary adaptation.



The main supporting elements of big span halls can beé classified,
regarding their statical systems, as faollowsa: )
1l) Girdar Typea

Under these eystems, we undarstand girdera or trusses giving ver-
tical reactlions for vertical loads such aas:

a) Simple mirders: Fig. I-1 Ia
L] g X L}
! Ja

Fig. 1I-l1 4 simple girder

In this system, the marimum banding mement takes placa at cne
sectlon only (section a-a) and is relatively high. The dmaign of +he
glrder is govermed by the extrems fibear streas of the sams gection

and hence, uneconcmicl :
b) Cantilever girdera: Fig. I-2

. 5 C ; ;
' 11 A simple span | Li !
| 1
FPig., I=2 & cantilever girdar

This statically determinate system is generally used in long gir-
ders or where differential sattlemants ars axpactad,

c) Continuous girderar Fig, I-3

X ¥ i [ T X T T T T g T 3
hg g
Fig. I-3 4 continuous girder
Such statically indsterminats systems are generally usad in gir-
dera shorter than about 45 mg gnd :hirimdiirurnntitl sattlaments do
not give high internal forces.

In reioforced concrete structures, it is Eenarally not posaibla

to comstruct the knife edge hinges allowing the full rotation or the
rollers allowing the displacement and rotation assumed in such idaal

Btatical systems,
i Girders asupported on reinforced ‘concrete columns posasss_general-
1y some sort of firationm.

For girders monolithically cast with the columns, if no sract eal-
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culation as a building frame iz dons, it ie allowed to consider them
as freely supported on the interior ecolumns and rigldly connected to
the exterior columns. The fixing moment may approximately be estimat-
ed in the following manmer: Fig. I-#

— P s
f; Ie| &2
. B Cent
Z & 1 d
Il e
rl & (2)
——Er : oo o

Fig. I=4 Moment distribution in a building frame

Assume Io' I:L and I2 to be tﬁa mﬁﬁent’s of inertia of the girder
af a;ma11, the: lower column of height hl’ and the upper column of
height L. Their relative rigidity can be given by the factora:

- PR ) :
C, = == o w= = i reference value
L I
o
Il 1 '
Gy ===+ — relative rigidity of lower column
BT
2 by ] In relative rigidity of upper column -
Then, the fixring moment Hc at the exterior columns is given by:
c. +
K = 0. M
1l + €1 * C5

in which B is the firxed-end-mement of the loaded span T-_.L. This moment
will be distributed on the columns in proportion to their relative ri-

gidity c. Thus

M, = M ! and M, = M "2
= ™ = o

+ ey + ey ey + ey
For girders of top floor ¢; = 0 and Hl = M,

The sense of the bending moments can be adjusted by the system
-3 -



of arrows shown in Fig. I-4 b.

The exterior columnw are to be designed for the induced bending
moments shown in Fig., I-& ¢ plus the maximum axial loads, whereas thi
interior columns may be calculated for the maximum axial loads only.

d) Vierendeel girders: Fig. I-5
. i i i

Fig., I=5 A Viersndeel gEirder

Vierendeel girders are composed of a top chord, a bottom chord
and wverticals. This system is internally high grade gtatically inde-
terminate while externmally, it might be statically determinate as in
freely supported simple and cantilever spans or indeterminate as in

continuous spans. !

e) Trusses: Fig. I=6

Fig. I-6 -4 Continuocus truss

Trusses may, -in some cases, give a convenient solution for the
main supporting element of the hall, They may be simple, externally
statically determinate, or continuous, externally atatinﬂllﬁ indeter-
minate,

The Jjoints being monolithically casft and rigidly connected, the
induced bending moments may, in some cases, be uf considerable valnes
and in order to have trusses free.from corner cracks, such moments

must be considered in the design,

2) Bheds

These are Polygonal or curved slabs {nr.girﬁars} with tiez giv-
vertical reactions for vertical loads. As typiecal examples, we give
the followirig types:



a) Baw=toobth slab and girder types: Fig. I-7

Elab type
Pig. I=7 BSaw-tooth sheds

b) Polygonal sheds with & tie: Fig., I-8

Fig. I-8 A Polygonal shed with & tie

In these two types, the elongation of the tie for spans l<10 ms
is generally small and can be neglected. Hence, we get vertical reac-
tions for wvertical loads.

¢) Arched slabs (or girders) with a tie: Fig. I-9

Pig. I=9 Arched-slab roof

%)} Frames _
The main feature of & frame is the continuity and rigid connec-

tion of the horizonmtal, inclined or curved members of the roof with

the vertical or ineclined supporting members. The cnﬁtinuitr glves in-
clined reactions for wertical loads, and the bending moments duese to
the loads will be distributed on the different members of the frame.

Frames may be classified to the following systems:
-5 =



8) Statically determinate frames: Fig. I-10

Cne may recognize here: cantilever frames (Fig. I-10a), simple
frames (Fig. .I-10b) mpnd three hinged frames (Fig. I-10c).

ris; I~-10 Statically determinate frames

b) Once statically indeterminate frames with or without ties:
(Fig., I-11)

Ly "y v wiriced
.?-Hr:‘ldfl-f" Frame

Fﬁ'&:mf Frame
wi® = f A

-

S = ) | E—

Fig. I-11 Once statically indeterminate frames with or without ties

c) Twice statically indeterminate two~hinped frames with tima:

(Fig. T+12)
. X X "
?-MAF#-:' Frame Froewd  Frame
wil® a Lw i
Fig. I-12 Pig. I=13

d) Three times statically indeterminate frames: Fig. I-13

) Continuous and multiple frames: Fig. I-1% & and b.

Such frames are Eenerally high Era&e'statiaallr indaterminate and
need much time to determine the etatically indeterminate +values and
the intermal forces. The solution can however be much simplified for

.



symmetrical frames generally used in atructures.

Py E—— —— —— E— -, = -

Conlimvousr [frame

(a)

Fig. I-14 Continuous and multiple frames
%) Arched Roofs

Structures covering long spans and large areas without intermed-
iate supporte using the minimum amount of building materials have al-
waya been one of the main aims of structural engineers. When a plane
roof purface is not necessary to meet the functional requiremeats of
the structpre, an arched roof convenleatly formed is normally found
to give the least amount uf'huilﬂing materiales because here, the ex-
ternal loads are mainly resisted by intermal compressive forces plus
‘small bending moments and shearing forces. Arches may be constructed
in different systems as shown in Fig. I-=15 a to f.

B i WS urp SR o

F- ﬁ!’ﬂf.d" lﬂ.‘

J‘ﬁ;.;'_f _,.J rF- .Hr."?'.l\" w.l!: .,,rﬁ ;fn?.ﬂ‘ rri'
- ﬁrrﬂ?--f m.l‘ .'rrr-" arch Snlopvesr arch

-'JH f-t f: ”.” f.rr
Fig. I=15 Different types of arched girders

5) Shell Roofs

Ais a further development of the arch prineiple, shell surfacesa
provide structurally efficient solution to the problem of carrying
roof loads over long spans. They owe their efficliency %o the trans—
lation of the applied loads into compressive, tensile and shear at-—
resses in the plane of thelr surface generally termed as the meobrane
stresses. We recognize: Surfaces of revolution, cylindrical shells,
and double curved shells.

. .



a) Surfaces of revolution: e.g. domes and cones. Fig., I-16
i f

lindrical shells

The behavior of a shell is completesly different from that of the’
arch, The arch 1s a plane structure resisting the external loads by
plane forces; whereas the shell is a space structure supported on the
diaphragms and resists the external loads by membrane stresses in its

surfacea.
Shells may be long as for example, the barrel wvault shown in Fig.
I-17 and the saw-tooth shell roof shown in Pig. I-18. Such sghells may

c) C

L-to em.
Diaphram 4 brd-so L
| U O S
"
2 | | Z
. |
| L

Fig. I-17 A long cylindrical barrel-vault shell roof
- B =




be considered as beams of @ui.md. breadth b.

/';'q.me.r (2! fo m.

= n =

2 m. ] e g
P il 5 1
Fig. I-18 4 Long cylindpical saw—-tooth shell roof

They may also be short as for axample the shell roof shown in
Fig. I=19. Such a shell may be treated as a curved membrane supported

on the diaphrapgms.

o

o e o I

‘

T - T

| 1 ll:-ﬂ—ﬂlnl L |

| T R
Fig. I-1%9

A short-shell roof

¢) Double curved shells ]
Double curved shells have been recently extensively used in mod~

ern structural architecture to cover relatively big areas with the
least possible building materials, Some of the simple forms are shown

in Fig. I-20 a to d.

A ——— ]

e \1\ .
‘- -
Fig. I-20 Double curved shells on triangular and rectangular
ground plan ' '
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6) Polded-plate roofs: Fig., T2l
In an attempt to Bimplify formwork and Yot retaln many of the ad-

—r—F Y ey

Fig. I-21 Folded-plate roofs




vantage characteristics of cylindrical snells, the foldad-plate struc
fure ie evolved. These surfaces have a deep corrugated form similar
To that of eylindrical shells, except that plane slements are used,

intersecting in fold lines parallel to the spdn direction as shown in
Pig. I=21l.

The following 7 chapters, II to IIIV, include the theory, design
and construction of the classic basic systems of the main supporting
elements of plane structures namely: Bimple girders, continuous gir-

ders, frames, Vierendesal girders, trusses, saw-tooth structures and
arched roofa.

In chapter I some constructional detalls, neceasary for the de-
8ign are treated.

In order to reduce the intermal forces due to temperature changes,
shrinktage displacement of the supports, binged and sventually free
bearings are extensively imtroduced at the supports of the main sup-
porting elements. Chapter ¥ has been devoted for the theory, design
and constructional details of such bearings.

The analysis of folded-plate structures, followed by detailed

design ewxamples is presented in chapter XI.

It has been found, as stated befors, that big spans with the least
possible amount of building materials can be achieved by the use of
shell structures. The axact analysis of such structures is ganerally
very complicated, but due to the remarkable reserve strength of shell
construction, which maltes it practically impossible for a shell struc-—

ture to collapse, it has been posaible, without detailed mathematical
analysis, to use simplified methods of calculation based on the qua-—

litative understanding of the fundamental nature of the behavior of
eome forme of shells.

Some simple basic forms of shell structures, treated in a clear,
Eimple manner are glven in chapter XIT.

- 11l =



II-~BINFLE GIEDERS

1 ' - Ikéﬁ* S =

mar £ = Poms 1

Fig. II-1 4 simple girder

Simple girders as the main supporting element of a roof of &
hall (fig II-1) may be used when differential settlements are liable
to take place or in special cases e.g. when a mew roof is to be con-
structed on existing heafing masonry walls or if the columns used
to support the girders are relatively slender ... etc.

If the span-of a simple girder is bigger than 10 meters, it is
recommendéd to make one of the supports hinged and the other sliding
to allow for the free movement of the girder. In this case & clear
horizontal joint between the reinforced congcrete reof and the walls
is to be arranged ellowing the necessary rotation and displacement
of the roof to take place without creating cracks in the wall.

<In case of girders supported om slender columns, it is recomm-
ended to join the columns supporting the girders and lying in
masonry walls by horizontal beams arranged at convenient distances
(3.5 me). In this manner, the colummns and the ocutside walls, as one
plane, can follow the deformation of the roof without creating ver-
tical eracks between the columns and the walls or horizontal cracks
between the roof wall beams and the walls.

In masonry or brick walls, it is however a good practice to
arrange reinforced concrete connecting members = vertical colu=zns
and borizontal beams - every 16 to 20 mE. Accordingly , if the

e I%L
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vertical columns in the outside walls of a building are arranged
every 6 ms , it is recommended to arrange horizontal connecting
beams in the wall every 3-3.5 ms.

Figure II-2 sbows the detalls of the roof - main girder of an
air-conditioned hall 14 ms span.

In order to reduce the own weight of the 140 cms deep main gire-
der, the breadth of B0 cms from the web is shosen 20 cms and &an open-—
ing 60 x 350 cms for the sir-conditioning duct is arranged at the
middle of the span. F

The opening has been chosen in the tension zone, which is sta -
tically not acting and, at the middle of the beam where the shesr
atresses are minmum. Its height is to be chosen such that there is
sufficient concrete area at the top to resist the compressive stre -
gses in the girder and ample cover lor the tension reinforcements at
the bottom.

The bottom enlarged part of the web is arranged in order to give
sdequate space for the tension reinforcements of the main girder.

In order to resist the shear stresses safely, the breadth of the
web has been increased gradually from 20 to 4#0 cms on the two sides
of the girder at zones of high shear stresses. For the same reasocon,
it is not recommended to errange the air-conditioning duéts near the
supports at the inner surface of the nutgida walls.

The steel reinforcement shown in figure II-2 gives the classic
known arrangement in which the disgonal tension of the beam is main-
1y resisted by the combined action of the bent bars and the stirrups.

In order to avoid the formation of vertical shrinkage cracks
along the web, shrinkage reinforcements ¢ 10 mms arranged at distan-
ces of about 35 cms along the outside surface of the beam are provid-
ed, The relatively heavy bars arranged around the air-conditioning
opening are recommended.

The hasunches introduced between the roof slab and the web of the
main girder increase the moment of resistance of the girder because
in this manner, the effective breadth of the flange is increased.

We give in the following some nNew trends in the design of re-
inforced concrete girders

1) The use of deformed high grade or cold twisted (e.g. Tor or Ten-
tor) steel for the main reinforcement is prefered due to bigger bond

o



and higher resistance. If the bopnd between the steel reinforcement
and the concrete is ineressed the tension cracks .are increased 4n
nunber and decreased in width. Due to higher resistance the area of
the steel reinforcement is reduced and the girder under consideration
is generally more economic. In the shown example , the main steel or
12§ 25 mm may be replaced by 12 ¢ 22 high grade steel or 11 P 22
cold twisted =teel.

2) It has been Proved by tests that the use of high grade reinforce=
ments’ of small diameters distributed on the tension zone of the gir=

der gives a Eatta; distribution of the cracks, Figure II-3 shows the
crosa-geetions of two beanms designed for the same span and loading ,

and having the same moment of resistance., At failure, the number of

Yension oracks in the beam b reinforeced by high grade steel was three
times &8s much and much narrower than those of beam a in Epite of the

higher stresses in steel. :
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Pig. II-3 Sections of the same moment af resistance

3) When tension cracks are developed at the central part of a beam,
the bond between the steel and concrete is broken st the position of
the cracks. Under heavy loads, the width and number of tension
cracks is inereased and the beam may collapse ms the bar iz pulled
through the concrete. To prevent this cccurrence y end anchorage is
essential , fig IT-4., If the anchorage is adequate, such a beam will
not culiapse even if the bond is broken over the ‘entire length bet -
ween anchorages. This is so because the beam acts as an erch with =
tie as shown in figure II-4, in which the shaded uncracked concrete
represents the arch and the tension reinforcements the tie. In this

e T



gase, the force in the tension steel, over the entire unbonded length,

is constant and equal to T = Hmax ¥ 4 b In consequence, the total st-
sel elongation in such beams is larger than in those in which bond is
preserved, resulting in larger deflections and larger widths of cracks.

:///‘W
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Fig. II-4 Tied—arch action in & cracked beam

Tn this manner, one can easily imagine that the cutbting off of
the longitudinal tension bars weakens the tie and reduces the bearing
capacity of the beam. The shearing forces can however be resisted by
the inclined compressive forces of the arch.

It is con seguently recommended to use for the tension reinforce-

ments deformed bars giving high bond resistance and, to introduce at
least one third of such reinforcements to the supports and to anchor

them well beyond the center line of the supports.
4) The width of the diagonal tension cracks depends on the t&pe-uf the
web peinforcements used, as can be seen fram the following test results
which show that the use of inclined stirrups arranged at small dist-
ances gives the best result. (Fig. II-5).
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Fis. II-5 Effect of type of web reinforcements on width of cracks
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5) A reinforced concrete simple‘beam can however be considered as &

complex . truse (Fig. II-6) with the tension steel reinforcement aas the
bottom chord, the top concrete - the flange - as the top chord, comp—
" ol

J-FJFJ-;..:-—

“"‘h\'\\\h\-\-\-‘l-“'i-‘t‘l‘l{u‘ll‘ﬂhﬁ\\t' ity e —— T

[
SR

LK

"F'
‘: ..*-:

Fig. II-6 Action of a simple reinforced concrete heam
s a4 complex truss
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ression concrete diagonals and tenslion steel vertical or diagonal
stirrups. '

&) It has been found that the temsion in the longitudinal reinforce-—
ment of a cracked simple beam is not equal to zero at the supportas ,
but there exlists a value Ta aqufl'ta il - 1.6 Q where Q 1s the shear-
ing force in the bottom chord of a trusas with inclined compression
diagonals as shown in Fig. II-7,

(e Tarah
e 7
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Fig. II-7 Tension in bottom chord of trusses with dif-
ferent inclined diagonals

7) The checking of the anchorase conditions at the enda of the long-
itudinal reinforcing bars should be based on the bending moment ( or
the tension ) diagram, which should be suitably displaced to take ac-
count of the need to absorb the horizontal components of the forces
in the'struts' (compression members) of the fictitious lattice system
of the complex truss,

This displaced diagram [sea Fig. II-8), which serves as the basis
for designing the longitudinal :uinfnrcnmant, iz obtained by shifting
the enveloping curve of the bending moments (or the tensions) parallel
to the center—line of the member in the most unfavourable direction by




by an amount ejual to the effective depth d of the section. The long-
itudinal bars should be anchorsd outside the 'displaced' diagram.’

The amount of displacament actually regquired may vary betweesn %
apd d, according to the efficiency of the transverae reinforcement:
tues value of d is thus certainly or the safe side.
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Pig. II-8 Displaced bending moment and moment of resistance diagraas

Conclusions
From the previous investigations, we arrive to the followlng con-

clusionsa:

1) The use of high grade or cold treated steels as tension reinforce-
ment is preferred especially for bigger diameters.

2) The ume of longitudinal reinforcements of relatively small dia-
métars 8-10 mm., distributed over the two surfaces of the web and at
snall distances (15 — 20 cma) reduce the width of the cracks and can
be considered as resisting a part of the tension in the section rel-
ative to the diastance of the bars from the neutral axia.

3) The marimum posaible part of the tension reinforcement is to be
introduced to the supports End well enchored thers.

4) The anchorage conditiona at the ends of the longitudinal tension
bars should be based on the ahifted bending moment diagram i.e., The
ends of the bars determined according to the clasasic moment of resist—
ance disgrm must be shifted a distance d in the most unfavourable dir-

ection. .
5) The use of inclined stirrups at small distances (15 = 20 cms) to

resist relatively high diagﬁnal tansion is most afreqtiva.
- 19 -



IITI ~-CONTIKUOUS GIRDERS

Continuous girders of constant and variable moment of inertia
give in many cases a coovenient solution for -big spens. If the
choice of the spans is free and the magnitude of the loads on the dif-
ferent spans is the same, it is recommended to choose the ioner spans
somewhat bigger than the outer ones in order to have field moments

of nearly the same order (fig ITII-1).

3

7 Erer =3t /s &

Fig. III-1 4 continuous girder

The increase of the depth of the girder towards the supports
affects the bending moment disgram increasing the connecting moments
by 10 - 20% and decreasing the field moments by the coresponding
values., For spans bigger than 10%% such effects must be taken in con-
sideration as shown in the following example of & crane girder subject
to nnirarn dead loads and concentrated rolling loads. (Fig TIT=2,i3

- Ts reduce the amount of work included in the problem, the girder
is qhnaen gymmetrical and composed of three spans only.

Refer to "Theory of Elastically Restrained Beams" by M. Hilal .
Published 1945.



Fig. IIlI-2. Fixed polints, moments and shears in a continuous girder’
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We give in the followihpg the main steps reguired to determine
the internal forces using the graphical fixed - points - method.

The internal forces due to the permanent uniformly distributed
dead loads will be determined by superposition of uniform loads on
the different spans. The increase of the dead load due to the varia-
tion of the depth of the msin girder near the supports may be neglec-
ted without making an appreciszble error.

‘The internal forces due to the rolling loads will be determined
by the influence lines. It is generally not recommended to use the
influence lines for determining the internal forces due 'to permanent
dead loads, the use of the direct method of loading of the different
ppans gives much better results.

1) Determination of the Fixed Foints
(Fig III-2 B,C and D)

In order to find out the left fixed point F, of span l, , one
has to determine the position of the resultant elastic weights Rl 4
HE and R5 ; Where

R, = resultant of elastic weights W'-.&E-HIDII due to Hb = 1 acting
on Ly

K, = resultant of elastic weights w =4As HIﬂfI due to M, = 1 acting
on 1
P2y

R5 = resultant of Rl and RE

These positions can be determined graphically in the following manner:
¥or ab and bc as simple beams , draw the bending moment diagrams
(B.M.D.) due to M, = 1 , then determine the reduced B.M.D. by multi-
Plying the ordinates of the E.M.D. by Ian. Divide the reduced B.M.D.
wnto convenient number of strips A s. Determine the magnitude of
the elastic weights w =A s HIEKI(rig IIT-2B) and draw their force
nnd link polygons. (Fig III-2C).

"1 E RE lie at the point of intersection of the first and last rays

of Fhe link polygon of the elastic weights on 11 and LE respectively
und R3i5 the resultant of El and R, .

1f the beam were of constant moment of imertia, then El and R,
lie gt the third points of 11 and L, respectively whereas Ry lies &t
Lbe inverted third point.

Having determined Rl . RE and R3 y the left fixed point FE of

-



span L, can be determined using "the known normal construction of beams
of constant moment of inertis (fig. III-2D) by drewing a line m n pass-
ing through the left fixed point of span t; € in our case, point =) ,
meeting Ry in m and Hﬁ in n , throughk m draw line m b and extend it

to meet R, in r , line n r intersects b ¢ st the position of P, W

Repeating the same construction for spans lE and 13 as simple
beams due to Hc = 1 , one can determine the left fixed point F5 of
gpan 13 pt :

Due to the inecrease of the moment of inertie of the girder.to-
wards the supports, one cen easily notice that the position of  the
fixed points F moves towards the ecenter-linesz of the gpans relstive
to the fixed points F of the same girder if it were of constant mom-
ent of inertia. (Fig. IXII-2D) -

2) Bending Moments and Shearing Forces due to Uniform Loads

a) Unsymmetricel exterior span loaded by g t/m" .

For such & span of unsymmetical variation of moment of inertia,
the bending moment diapram can be determined as follows (Fig III-2E).

I'raw the MD ~ diagram (shown full) and the reduced, HDIQKI dia-
gram (shown dotted). Determine the center of gravity B of the re =
duced clagram by dividing it into convenient vertical strips, asas -
uming the ares of each strip as an elastic weight acting in its cen-
ter of gravity, and drawing & force and the coresponding link poly-
gona, Through & draw a vertical line to meet the Hn - diagram in 0O ,
The closing line of the B.M.D. passes through the point of intersec—
tion of the crossing line b O and the vertical through Fy

b) Bymmetrical intermediate span loaded by g t/m' .
This span hes & symmetrical variation of the moment of in =
ertia end hence O lies at tlhe middle of the Hu = disgram and the nor-
mal construction of the B.M.D. spplies, (Fig III-2F).

The finel B.M.D. due to a dead lood g/m acting on all spans
(fig III-2G) shows thet , due to the increase of I at the supports ,
the connecting moments are increased and the field moments are. de -

creased compared to beams of constant I .,

Ag the depth and reinforcements of the girder along the Spans are
generally governed by the field moments, then a beam of wvarisble I
ig supposed to be more economic than & beam of constant I.

The shearing force in any panel can be determined from the

= T -



general equation :

ih;re

Q, = ‘the shearing force of the simple béam

Hr and Hl = the connecting moments at the right and left supports of
the span under consideration.

3) Bending Moments due to a Concentrated Unit Load

The internal forces ( B.M® % 5.F® ... etc) and reactions of &
eontinuous beam due to rolling loads can be determined by the influ-
ence-lines-method.

The influence line of a force acting in any secticn of a beam
represents the value of the force in the sectionm due to a simple unit
load moving over the beam, the ordinates being drown at the position
of the load.

In order to determine the influence lines of the bending moments
of the d@ifferent sections, one has to draw the B.M.D. due to a com-
centrated load F = 1 at a gseries of sections. For beams of wvariable
moment of inertis, this can be done as follows:

For a load P = 1 acting on span L1 y draw &8 veréiéa; through the
point of application of P to meet the link- polygon of the elastie
weights w due to M, = 1 in e ( fig. III-2C) , then draw the line e I,
parallel to the closing line to meet the first ray of the link poly-
gon in f; the horizontal distance f g gives the crossing distance kl
used for determining the B.M.D, es shown in figure III-3.

[

5‘ e | PR B i iraniaransess c o
== X :

Fr
(i

“Bending mement dlagram dne to & unit load on exterior span

For a load PE = 1 ecting on span LE at a distence x from the left
support b , the crossing distances ki and ké can be determined by
essuming F, once at ¥ from the left support b and once at Tthe same
distence x from the right support .- (Fig I1I-2C). The B.M.D. is
drawn by plotting the smaller of the crossing distances k' at the
nearer support as shown in figure III-k.
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It has to be noticed that the values of k are to be measured
Irom figure III-2C to the linear scale of the girder and plotted in
figures III-3 and III-4 to the force scale of the B.M.D.

5

Fig. III-%

Bending moment diagram due to a unit load on intermed. span

4) Representation of Influence Lines as Elastic Lines
—|-"—_-'-“_.u.|__'_

The influence lines of B.M."7 v B.F.% or reactions ef a contin-
uous beam (or any statically indeterminate structure) can be repre—
Bented as elastic lines in the following manncr:

Choose a main system in whi.bh the required forece is egqual to
Zero; if we apply the same force as an external load acting on the
chosen main system, then the resulting elastic line gives the form of
the influence line. (Fig III-5). '

If it is required for example to determine the form of the in-
fluence line for the bending moment Mn acting at section n of the
continuous beam a b & 4 » choose a main system in which Hn = O by in-
troducing a hinge at n. THis main system will be equivalent to the
original system if hn acts on 'the beam at n. The elastie line of the
chnagn main system due ta Hn Eives the form of the influence line of
M, (Fig III-5A). The proor of ,this statment is as follows:

The relative angle of rotation a8t n of the continuous beam abed
is given according to the law of superposition by the relation :

“n "%y *+M, 0, =0 E
in which
@ am = angle of rotation of main system at n due to Ph = 1
n-nn. n L1 Fi []] " L] " L1} n Hn-l
According to theory of Maxwell, we have
% am =% gn
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in which

ﬁ;n = deflection at point m of main system due to Hn =1l .

Bo that

M, = ﬁmn x constant

In the same way , for the influence line of the bending moment
at b , M, , choose & main system in which M, = O by introducing &
binge in the beam at b , the elastic line of this main systen due to
M, gives the form ef the reguired influence line of M, (Fig III-5B).
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Fig.III-5 Representation of influence lines as elagtic lines

The same principle can be used for determining the form of the

influence line of the reactions, that is, for the influence line of

the resction Hh {or R. ) choose a main system in which Ry {or HE] = 0,
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this can be done by removing the support at b {or a), the elastic line
of the chosen main system due to Ry {or Ea} 85 a loed gives the form

of the influence line of R, (or R,)- (Fig III-5C).

The form of the influence line of the shearing force at any sec-
+ion can be determined by cutting the continuous beam at the section
and applying two egual and opposite forces., (Fig III-5D).

This method is generally not used for determining the ordinates
of the influence -lines but as check for their form.

5) Influence Iines for Bendine Moments and Shearing Forces

The ordinates af the influence lines of the bending moments are
generally determipned from the ordinates of the B.M.D, due to P = 1
acting at the different sections, but the influence lines of the shear-
ing forces in all sections of any span can be done in one pProcess &s
follows : (Fig III-6).

My Hr .
a0 i, L

a 7 < I T <

M.. My e
M- : (M - M )L

L B T T T e
L
I ofQ, , N
Pig, III-6 | s influence line of shear.

The shearing force at any section is given by:
M, - M '
Q = Q, + ——L

The influence line of Qﬂ for any section in span bec is given by 2
triangles bounded by the two parallel lines with ordinates equal to

1l et b and ¢. It waries from section to section. The effect of

{Hr - Mijl iz given by the curve shown in'figufe I11-6, whose ordin-
ates are constant for all sections in be.

&) Absolute Bending Moments and Ehéaring FPorces

The maximum bending moments and shearing forces due to rolling
loads will be a= shown in figure III-7a & B. Adding the B.%? and
5.F% due to dead loads given in figure ITI-2G & H to those due to
rolling loads, we get the abslute maximum disgrams given in figure
ITT-7C & I .
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It has to be noted that for heavy live or rolling lcads, negative
field moments M_ at the middle of intermediate spans are liable to

gake place, in which case, the necessary top steel reinforcement must
be arranged.

8 MLH!L]ﬂljl||2]|I||ﬁ|||umum-..;.....,
i nmn'lﬁllll||if|||||ﬂlmw,
--'nrlHIIIH[l . H =
2 i o "umm|||ﬂ!i|ltt|u!!s,:... m||‘"||m||||ﬂ||ilﬂlﬁln!.m,. |
m|u“HtII]I\IMWW "“”"”“”"“'"WU!M ]

Abralole max: $F° olowe o ﬂeun’afacffn}lj doaals
Pig. III-7 Absolute maxrimum bending moments and shearing forces

Recommendations

1) The arrangement of the tension reinforcedent is to be done accor-
ding to the tension line shifted a distance d from the H,»"_T.-'ET - line
as_shown in figure IIl-8.

2) The tension reinforcement over the supports is not to be concent-=
rated in the rib, a better distribution of the cracks will be attein-
ed if a part of the reinforcement is distributed in the flange, 1if
any, as shown in section BE-B of figure III-E.

3) The maximum shearing force occurs immediately adjacent to the
supports but the maxioum shear sTress to be considered in the design
ijs that at & section d from the face of the support because adjacent
to the supports, the additienal locsl stresses caused Dy reactions
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counteract crack formation . For this reason , it is generally re-

coumended, in cases where bent bars are arranged to resist diagonal

ténsinn » to make the interior bent at a convenient distance from th
face of the support so that the top horizontal part of the bent bar

can share effectively in resisting the connecting moment. (Refer to
figure III-8 in which the first bent at the intermediate support is

arranged at the top end of a line drawn from the face of the support
and making 60° with the borizontsal).

Fig. ITIT-8 Details of reinforcements of a continuocus girder

4) BSome new tests have shown that the best distribution and minimum
width of cracks can be attained by using inclined (or vertical) sti-
rrups at zones of high shear stresses as was shown in Tigure II-6.
Accordingly the use of straight bars only for reinforcing continuous
(or simple) beams may be the convenient solution. Fig II1-9

5) The slope of the effective heunch must not be more than 3:1,
otherwise , the principal nprmal compressive stressJy parallel
to the cuter surface of the haunch is eccessive relative to the
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horizontal normal stress g,

SRR

- 3 28 = 12 | 1=**‘—'“—ﬁL
ok . s
o 2L,

FPig. III-9 TUse of straight steel bars and inelined stirrups
in continmous girdara

According to figure 1I1-10, we bhave :
2 @, ds cosa ) cosa = o, ds

a0 that

'D'l - U:: / c.nszu
For a slope 1:1 cos<a = -é- end O, = 2 @, mot allowed |
W " S:1 ' cosca = §/10 " 0, = .11 O, accepted.

Fig. III-10 Prinecipal campreasive stresses in haunches

§) The maximum moment that can be resisted by & section is that which
causes a stress in tension steel equal to its yleiﬂ stress; so that,
i{f in a continuous beam, the moment in any of the critical sections—
sections of maximum connecting and field moments — is bigger than the
gentioned maximum walue, the inecrease will be Tesisted by the other
eritical sections on copdition that the eguilibrium of the beam is
peintained. A statically indeterminate beam remains in egquilibruim
until the stress in steel of all critical sections (max three in nu-
mber) reaches.the yield stress, at which moment collapse is liable to

.



take place,

Accordingly, a redistribution of the bending moments determined
according to the theory of elasticity is possible; any of the critie:
values may be changed within a range of + 16% of i, {ﬁﬂ = the max.
B.M. of the simple beam) on condition that the tension reinforcement

15 pot chosen smaller than half the walue required zccording to the

theory of elasticity . Fig III-11.
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Fig. III=-11 Limits of redistribution of bending moments

In order to avoid visible cracks in the lower surface of beams
(and slabs) and to have convenient depths = in case of beams of small
breadth - and reinforcements, it is generally advantageous to reduce
the connecting moments and to ipcrease the field moments by the cor-

responding valuesg.

Example:

4 continuous beam of 2 equal Spans is subject to a dead load
E =1 t/mand a live lcad p = 1 t/a. Determine the extreme values
of the bending moments for the minimum pesible design connecting mo-
ment. The span of the beam is 8 m.

Seolution: (Fi ITI-12)

E f-fr;m __Fl.lfrl.-"‘rﬂ'f
Connecting moment for one span ﬁ:+J..”...;1...,} S e
only loaded by E =1 t/a T b .T el
Hy = 812 /16 = 1%82/16 = 4 mt /
fiax. connecting meoment for the 4&&

IHEEE

=2k |
.-FI". d'{'-r-l".r.n:.éi-"f:.-ll'r ,.Jt'r. i f.-'f.fd.ﬂﬂﬂf i-l/“rr'ﬂ-::f‘:

€ pans loaded by g + P =2 t/m
oax. ﬁb = 4 x 4 = 1a mt

tllowed reduction of connecting
Zoment;

~ Fig. III-1=2
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, Desipn coonecting moment _ 16 = 2.56 = 15.44 mt
For mex. field moment, the twe spans will be loaded by g and one span

ooly by p , in which case
Hb L] B x4 = 12 mbt
Quter reaction of loaded gpen : K = 2 x B2 = 12/B = 6.5t

hax. field moment lies at point of zero shear which is assumed to be
e distance ¥ from the exterior support, where

x = B/Ww = B.5 /2 = 3%,25n
kex. field moment M, = WXS ¥2 = 2 x 3.25° /2 = 10.6 mt

After re-distribution, the connecting moment for one span loaded is

given by:

My = 12 = My = 12 - 2,56 = 9.44 mt

Outer reaction of loaded span : R = 2 x 8/2 - 9. 44/8 = 5.84 ¢
Max. field moment lies Bt @ = 6.H2/2 = 5.41 m
Fax. field moment HI = W xE /2 = Exﬁ.#la S 2 = 11.64 mt

 We give in the following some examples of continuous reinforced
concrete girders: ’

The example shown in figure IiI~15 givss a continucus girder with

a relatively short span between long spans. In this case, the short

span will be subject to negative connecting moment over its whole
length; the reinforcements can be arrangoed as shown.

‘Fig., III-13 Details of a continuous girder with a short span
between long spans



If the shorter spanm is an outside one , the details can be as
cshown in fipure ITI-1&4.

——
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Fig. IIT=-14 Continmous girder with an ocutside short span

Fig III-15 shows a continous girder 15 ms span supporting a 10 m
saw tooth roof in factory 135 ut Helwan.

FAgy- T

b
B
3

|
Fig. I1I-l5 Oross and longitudinal sections of factory 135 at Helwan

The details of reinforcements of the roof slab and secondary beams
as well as the details of the mein girder are shown in fig III-16,

Due To constructional requirements , the bearing area of some
continous girders on the supporting columns is reletively small - -
the bearing at the right support of the girder shown in figure I1I-15;
if the cross reinforcements of the bead of the column are not suffici-
ent to resist the tensiom due to friction and splitting = crack, which
ney endcanger the safety of the whole girder, is lisble to be developed.
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The required cross reinforcement can be cazleulated as follows: (fig

Assuming that the frietional force tesulting from the

possible re —
sistance to shrinkage is B = ¢ &

in which

U= 0,2 to 1 according to condition and type of bearing plates,

and the cross tensile splitting force due to the concentration of
A
A is : L

—

>

Forsible crack

-',Fm.ﬁ:

Fig. ITI-17 Horizontal forces and eross reinforcements
at the head of a sugporting ecolumn

Then the total cross tensile force is

H + T, and the required croszs
reinforcement is given by

A, = (H + T) /O = (0.55 to 1.3) AT
s s

Fig III-18 shows the roof slab

and the main girders of an air
conditioned wollen textile factory.

The air-conditioning ducts, 10
meters apart, have a trapezoidal section 1.5 ms clear depth, their

clear width i= 1.00 m at top and 0.B0 m at bottom. The supporting
columns are arranged below the ducts at distances of 24 ms.

The walls, top and bottom slabs of the duct have been chosen
€0 ems thick, so that it was possible to use the 1.90 ms high trape-
zolidal section of the ducts as eontinuous main

girders 24 ms span to
support a rivbed roof slab 8.6 m= eclear span.

The ribbed slab is one way and 30 cms thick.

It i=s composed of
& solid slab & ems thick

and ribs arranged every S0 ces. The ribs
have a trapezoiflal section 24 oms deep and 8/10 cms wide. In order

to distribute the load over the ribs- and to assure their combined

- Ah -



action , two stiffening ribs bhaving the same section &s the main ribs
are arranged in the longitudinal direction parellel to the ducts. In
order to have adeguate space for resisting the connecting moments two,
40 ems leong, Solid parts ers arranced adjacent teo the ducts.

The reinforcezsnt of the soliéd slat i=s S5 8/m normal to the ribs
end 4¢6/m parellel to the ribs.

The main ribs are reinforced by 2¢ 16 at the bottom in the span
and at the top over the supports. The stiffening ribs have Eﬁnla'at
bottom and 2 & 1% at top.

The reinforcement of the main girders is placed in the lower
slab at the middle of the spans and in the top slab over the supports.
The bent bars sre placed in the walls. In order to avoid splicing of
the raiﬁruraements, special long bars of length ¢ 32 ms ere used.

In continuous girders of egual spans which are of common use in
buildings, the connecting moments over the supports ere generally
bigger than the field moments. If the slabs are arranged at the up-
per fibers of the girder, then the sections of bigger moments at the
suppeorts behave a&s rectangular and reguire big depths, whereas the
sections of smeller moments at mid-span behave as T-sections and re-
guire relatively smaller depth.

In cese & girder of constant depth is required, it is recommen-

ded:
&) to redistribute the bending moments by reducing the connecting

moments by an amount {.Hﬂf6+ The reduction may however wvary from

support to support to give a simplified distributiom of the reinfor-
cements,

b) to reduce the connecting woments over the supports according to
a parabeolic curve due to the distribution of the reaction over the

width of the support, and,

¢) to design the section of maximum connecting moment for the mini-
mum depth and the meximum a2llowed compression reinforcement which
sust be < ~0.4% the tension reinforcement,

-
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IV—- F R AKES

. {rame is a structure in which the rigid connections between the
girders and the supporting coluamns are utilized so that the intermal
forces due to the loads are resisted by the combind action of the gir-
ders and the columns i.e. the bending moment Ma is distributed on both

of them. (Fig IV-1).
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Pig. IV-1 Frames and simple girders

~ In a sicple girder, we get for vertical loads vertical reactions

while in & frame, vertical loads give inclined reactions.

The magnitude of the bending moments resisted by the columns de-
‘pends on the relative stiffnessy.of the girder with respect o the

columns, where
IE
o= '-T- - -E-
1

For constant Il and IE and uniform load P,

of & rectangular frame is given by:
2

T Pl _ . .p

¢ 5{3 + 2%)

-3

the connecting moment K,



Toe fiegld moment is thererugar
- 8

e give in the following fabln
b/, and I, / I, values

= +M
[+

the valuesz of kl and EE for different

nA | I/L, H kg kg

0.4 0.60 | 16.8 | 15.3
6.5 | 2.5 | c.75 | as.0 | 18.8
0,6 .90 | 19.2 | 13.7
0.4 0.80 | 18.4 | 1a.0
¢.5 | 2.0 | 12,00 | 20.0 | 213.3
0.6 1,20 | 23.8 | 12.7
0.4 1.00 | 20.0 | 13.3
.5 | 2.8 | a1.25 | 22.0 | 212.6
0.6 1.50 | 28.0 | 12.0

The table shows that the bigger
mopent resisted by the columns,
iation of the moment of inertis
bigger moment of inertia resist

L L B b L 1 L ] & 1 L i 1J

the value of W, the smaller is the
This moment deponds also on the var-
in such a way that the portions of
bigger moments a&s shown im fig IV-2
which shows three two-hinged frames of the same span subject to uni-
form loads. Cese 2 shows s frame with a stiff girder and s slender
column; the bending moment M_ = plz /8 is mainly cesisted by the gir-
der and a small bending moment is resisted by the columns. 1In case b
the girder and columns are approximately of the same stiffness , the

NINE:

Fig. IV=-2 Distribution of moments between

L R

girder and columns



field and corner connecting moments are nearly of the same order. Case
¢ shows & frame of relatively big moment of inertis at the COrners
causing big connecting moments and small field moments.

The minimum bending moments in a frame take Place if its axis
coincides on the line of pressure of the loads. The axis of a reinf-
orced concrete frame may be assumed as the line connecting the centers
of gravity of the plain concrete sections; the width of flange to be
considered in T-sections is B = Ets + b, ; where t, = thickness of
flange and l::lﬂl = breadth of web. The line of pressure gives the posi-
tion of the resultant of the loads and reactions in any section, (Re-
fer to fig IV-1), )

Accordingly, if the form of the frame is not specified, the eco-
nomic frames are those in which the axis coincides on the line of
pressure of the loads i.e for a single concentrated load choose a
triangular frame , for a series of concentrated loads,, choose a poly-
gonal frame and for a uqifurm load a parablic frame is most convenient

(Fig IV-3).

Tfﬁnﬂg#ﬂ;f Frame Fo &y & Frame
¢ Canc. doads I&ﬂt{ﬁgﬂﬁ Carr, Yoaalsr

fdfﬁ.{ﬂﬁi‘ .J""-ﬂaﬂ-"

-?;“'-'i#;#-fg.- K e
Limidarm  Loao

Iﬂ;:‘f' Los o

Fig. IV-3 Line of preasure and axis of frame
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The choice of the form of a frame is generally governed b¥ the
external and internal architectural considerations BS well as the
purpose for which 4t is used. The sratical system depends on The con—

ditions at the supports.

Stetically determinate three hinged frame=a are used on weak solils
that may be subject to small horizontal or vertical movements of the
bearing hinges. (Fig IV-4).

Two hinged frames are generally used on medium so0ils as they ara

not very sensitive to displacements of the supporkts.

Fig. IV-4 Three-ninged frames

Temperature changes and shrinkage cause moderate stresses that can
be easily resisted. Fig IV-5 shows aome of the forme extensively

usad in reinforced concrete structures.

b

)
| *.
|

Fig. IV-5 Two-hinged frames
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On good firm soils , fixed frames may be used. In this system,
the intrnal stresses due to horizontal or vertical displacement of
the supports as those due to temperature changes and shrinkasge are

relatively high and must be considered.

Three Hinged Frames

A three hinged frame is statically determinate. The external
reactions can be determined from the conditions:

2X=0 , ¥T=0 ,5 ¥=0 and M, =0

The example shown in fig. IV=6 gives the reactions, the connect-
ing moments &t d and e and the line of pressure of a three hinged
polygonel frame,

¥ig. IV-6 Example of a threes-hinged frame

EYT = O nrt
A+B = "3xB+3x6 - = 42
Moments @ b = O el i.%
Ax 12 = 24 x9 + 18 x 3 or
A = 22.5 ton
Therefore '
B = 12.5 ton
Moments about e = 0 i.e.
2.5 x6-Hx7?7-24x3 =0 or
H= 9.0 ton
Therefore Mg = M, = 9x5= 45 mt

The line of pressure is the link polyscn of the loads and reac-
tions with R& as the first ray at a and Rb as the last ray at b , 1t
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rust pass through the ninge ¢ . The internal forees can be easily de-

tarpined analytically or graphically.

Two Hinged Frames

4 two hinged frame is cnce statically indeterminate. The static-
ally indeterminate value H can be determined, if we choose the static-
2lly determinate simple frame with a hinge at a and a roller at b as
a main system, (Fig IV-7). Due to the effect of The load p, the roller

Aepd
Pig., IV-7 Analysis of a two—hinged frame

of the main system at b moves outwards a distance &, . A horizontal
forece H reting inwards at b such that.the horizontal displacement
of point b equals czero gives the reguired statically indeterminate
value. So that for the given frame, we have:

Stat. det. main system : Simple frame with a roller at b
Condition of slasticity - Horiz.displacement & = O
Stat. indet. value i Horiz. thrust =1
Ecuation of elasticity ? 6 =0 =358, + E b4
in which
Ea . boriz. displacement of maln system gt b due to load, tEMP. ass
&,1 Iy LL] ar * L] T ™ n L L1} mn H = lt
According to theory of virtual work
M_ M. ds N_ K, ds Q. Q, d
T .=j - S M E N j .- St S ] e S T |
a ET EA GA®
2 as RS as QS ds
1 = 51 = | =mm=-— + - 4 | m——
EL GAa'



in which

Hﬂ . Hn & q¢ are the bending moment , normal force and shearing force
of the main system due to the given lobds, and Hl g Hl and_Ql are

the B.M., K.F. wand S5.F. of the main system due to H = 1

atl = horiz. displ. of main system at b due to a temperature in -
crease of t ifc is the coef. of linear expansion.

The displacements 5 and ﬁ due to shear stresses are very
small compared to those due to nnrmal stresses and are generally ne-
glected; furthermore, only in structures where the normal forces are
relatively big and govern the design (e.g. in arches), the bending
moments uu;y are considered when calculating Eu and El 80 that

M Hl ds
_1 - .ﬁ = | e + 0 tL
" . ET
and
HE ds
-1 o ﬁl = ——
- EI
5o that M_ M. . ds
E‘ﬁ J--E-,-!l +Ea t]
H = - —rh = - = 2
1 Iﬂ_‘_‘f
I

When using this method of wirtual woerk , it has to be noted that
H is to be chosen in the direction satisfying the condition of elas-
ticity. It can however be chosen in any direction {inwards or out-
wards) , in this case the bending moments M, and M, are te be drawn on
the tenzion side taking the sense of H in ncnsideratlnn. J-F ds/I is
always positive and J'H M, ds/I is to be assumed positive iI the M_
and the corresponding ml dlagrams are on the same side of the axis af
the frame and negative if the two diagrams are on oppsite sides. If
the sign of B according to the previous equation is positive, then the
assumed direction is eorrect and if it is negative, the mssumed dir-
ction is to be reversed. I H Hl ds is the area of the M, didgrenm
along a certain element miltlpllad by the ordinate of the correspond-
ing ¥, diagram at the positionh of the center of gravity of the Hu
diagram, that isj-HD H ds for the lnclined member of length 5 (fi
IV=7) is given by An F. whereas Jﬁi ds for the same element is equal
toc the area of the trazpezoidal Hl - @iaram multiplied by the ordinate
of the same diagram lying at its center of gravity.
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Tables on page 44 & 45 give the values uf_fhj Mk ds as 8 Egen-
eral form fﬂr.rﬁn Hl ds and Iﬁi ds along &n element of length s for
constant moment of inertis end different diagrams of “J znd Hk "

The megnitude of the horizontal thrust H and the corresponding
internal iorces depend on the exact form of the axie of the frame and
toe moment of ainteria of the different sections; both depend on the
dimensions of the sections which in turp depend on the internal forces.
Tnis means that the final dimensions of & frame depend on the perlim-
inary dimensions for which the axis and the moments of inertia have
been determined. The solution can be assumed correct when the final
results are the same &5 the preliminery . Such a coincidence can be
achieved if we proceed as folleows: (Fig IV-=8).

Fre fimsmary 2xif

HLinad wwir

Fig. IV-8 Aaxis of a two-hinged frame
1) PFor any frame of general layout assume preliminary dimensions and

axis based on previous experience or similar structures,

2) Caloulate the own weight of the different elements and determine
the dead and live loads. o

3) Compute the moments of inertia ef tpe elements of the frame for
the assumed dimensions. The moment of inertia of giiders monolithic-
ally cast with the slabs may be celculated for a plein concrete T-sec-
tion with breadth of flange B = 6t_ + b_ . Such values are given in.
the following teble:

R - g



Moment of Inertis of T-Sections

'r A I
3 F | 7%
= 0B % I 1=
i
i
Values of 10 | ba |

2. /*

B 05 | J10 | W15 | 20 | 25 | W30 | .35 | 40 | .50 | .55 | .BO
05 g7 | 109 | 111 | 111 | 112 | 115 | 122 | 132 | 162 | 196 | 231
06 | 110 | 125 | 129 | 129 | 129 | 132 | 137 | 147 | 181 | 207 | 241
L7 | 122 | 140 | 145 | 146 | 146 | 148 | 152 | 161 | 195 | 218 | 251
.08 133 | 154 | 161 | 162 | 162 | 163 | 167 | 17 2o 2 260
.09 las 167 176 178 178 | 182 | 182 18 21 2 270
10 | 154 | 179 | 190 | 192 | 192 | 193 | 196 | 202 | 228 | 250 | 279
«11 | 164 | 192 | 203 | 206 | 207 | 207 | 209 | 215 | 240 | 260 | 288
«l2 | 173 | 204 | 216 | 220 | 221 | 221 | 223 | 227 | 251 | 271 | 298
13 | 1B2 | 215 | 220 | 233 | 234 | 234 | 236 | 240 | 262 | 281 | 307
<18 | 191 | 226 | 24)1 | Pa6 | 247 | 2up | 248 | 252 | 272 | 290 | me
«15 | 200 | 236 | 252 | 258 | 260 | 260 | 261 | 264 | 285 | 300 | 324
16 | 209 | 245 | 262 | 270 | 272 | 272 | 273 | 276 | 293 | 310 | 333
17 | 217 | 255 | 273 |-282 | 284 |. 284 | 285 | 287 | 304 | 319 | 3w
18 | 225 | 265 | 28B4 | 293 | 296 | 296 | 285 | 298 | 314 | 329 | 350
1S 254 274 295 A4 A0 a0 07 A05 K24 358 599
« 20 242 2835 S04 31k 518 319 219 320 333 47 27
. o2 258 01 25 254 339 240 240 281 353 305 '| 584
24 | 275 | 318 | 342 | 354 | 3509 | 360 | 360 | 361 | 371 | 382 | 400l
.26 291 354 360 373 378 380 A80 381 %89 589 | 417
.28 506 550 376 390 397 304 399 400 407 416 | 431
.30 | 320 | 366 | 392 | wo7 |15 |w17 | 818 | s18 | ses | 432 | 446
.32 | %36 | 380 | 40B | 424 | 432 | 435 | 435 | 435 | 441 | 448 | 481
8 | 352 | 396 | 424 | 440 | 448 | 452 | 452 | 452 | 457 | 44 | 495
« 56 367 | 410 | 438 | 455 | 464 | 458 | 458 | 469 | 473 | 479 | 490
=58 a2 426 453% | 470 LAD Las 485 485 | 488 497 S0
50 | 397 | 441 | 468 | 485 | 495 | 499 | 500 | 500 | S03 | s08 | 517
A2 | 412 | 458 | 4B2 | 499 514 | 515 | 515 | 518 | S22 | 530
« B 427 468 495 513 P 528 550 530 =52 36 Sy
45 iy L83 500 c27 537 SH2 Sty Sl 46 249 557
48 | 456 | 496 | 523 | S40 | 551 | 556 | 558 | 558 | 560 | 563 | 369
= 470 509 553 553 564 =1 571 572 573 576 582
«55 | 505 | s44 | 567 | 585 | 596 | 601 | 604 | E04 | BO5 | BO7 | B12
80 | 544 | 595 | 599 | g1 | 626 | 631 | 634.| &35 | 636 | 637 | s41
65 | 581 | 609 | 630 | 645 | 655 | 650, | 663 | 664 | BB4 | BES | EEB
«70 | 616 | 642 | 660 | 674 | 683 | 688 | 691 | o1 | e92 | 892 | &os
«72 | 652 | 675 | 691 | 702 |09 | 714 | 717 | 718 | 718 | 718 | 720
« B0 689 706 720 7eg 736 740 752 743 745 782 Tl
«30 | 761 | 770 | 779 | 782 | 7Be | 788 | 789 | 790 | 790 | 790 | 7e1
1.0 B335 833 B33 853 833 653 833 833 833 833 | 833
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L3 Celculated the staticslly indeterdinate velue and the correspond-
ing internel forces. The results of some simple .'oras of fraoes are
Eiven at the end of +this cnspter ; they sinplify these celculafions.

%) Deterzmine the dimensions raguired tec resist the calculated inter—
nal forces, which may be modified to suit the expected final form of

thne frame,

&) For the new dimensions draw the new exis and caloulate the ooment
of inertia of the differept sactinns. Ino this stage,; it is recommen—
ded %o divide the frame teo a convenient number of strips of length A s
and to deterzine H from the relation:

i M A=
M M. As =]
Z =Belem= s Eatl Z —=-q-== + EQ &L
B z et T -
F aAr > EAE
1 I
The caleulations may be put in table form as fellows:
] 2 | .2 . .
Element No| As |[b erB| © I ¥ 5 ¥y~ A s/T M, }EF 4 8/1
1
2
3
&
E — = i E =

7) The calculations are to be repeated until the final dimensions are
the same as the preliminegry. After some experience, each step can be
done copnce only.

In big frames, the real axis end the variation of the moment of
inertia are to be comsidered in the cglculations, otherwlse big errors
are liable to take place &5 shown in fig IV-9 in which the.corner mom-
ents will be increased by values taet may amount to 25%, in which case
the field moments ere decreased by zbout 20% due to the increase of I
towards the corners. (Fig IV-9).

The steps of the desigzn will be shown in the following simple

eXgople.
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It is required to design the main supporting element of & hall
shich is to be covered by a reinforced concrete flat rocf, if it is
20 ms wide, 40 ms long and 70 ms clear height.

#ﬂl’?ﬂ-‘&.,r

Fig., IV-9 Effect of haunches on internal forces

The main supporting element can be chosen as a rectangular frame,
20 ms span arranged every 5.0 ms. In order to get a resonable slab
~ 10 cms thick, secondary beams 20 x 40 cms will be arranged every
~ 4.0 ma. Accordingly, the general layout of the different support-
ing elements will be g&s shown in fig IV-10,

As 8 first estimate, assume the depth of the mein girder of the
frame ~ 1/14 of the span i.e. ~ 1.40 ms , the column may alsc be ass-
umed 1.40 m &t the top and 0.5 m at the bottom. The breadth of both
girder and columns ba can be chosen = 0.% m . For the praliminafy
celculations, the load on the frame from the roof may be assumed as
uniformly distributed.

Slab load = own weigﬁt + roof cover + 1live load

- 250 + 150 + 100 - 500 kg/m°
Equivalent uniform load due to own weight of secondary beams
- 0,2 x 0.5 x 2500/4 = 15074 m 58 0
Roof load = (500 + 38) 5 = G328 x 5 = 2700 kg/m
Own weight = 0.4 x 1.3 x 2500 = 1300 "

total = 4000 "

Breadth of flange of main girder B=6t, + bﬂ =56 x 10 + 40 = 100 ¢mE
Area of ecroag-section u A =100 % 10 + 40 x 130 =200 cm
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arm of center of gravity from cottom ¥, ™ 1000x135+40x130%65

= Vo cms
G200

The moment of inertia I.E can be determined according to table given on

Page 47 , hence

Tor b /B = ==9— = 0.4 , t_/t = 10/140 = 0.071 k= 0.0215
100 -
Therefore
I,= uB't> - 0.0415 % 1.0 x 1.4 O
| b - it
=i !l 3 1 ‘ t
S — X F— e
] R T ‘%r % Gunelen
E = Ham
N s :
E 5
v “ﬁ \ %t:Ezﬁa Lo
il i
T ;

~H#E &, 20 m. ol

=}

| e 2

P

_‘"Il I
||

Fig. IV=10 Example of a two-hinged frame

For the preliminary calculations v One may assume the moment of iner-
tia of the zolumn as constant and compute it for an average section
at 2/3 h i.e.  0.40 x 1.13" | thus

- &
I; = b t7/12 = 0.4 x 1.13%/12 = 0,048 =©

The relative stiffness is therefore given by

i h 1
e ==, E- 2.76 x Q.114 = 0,925
L Il 20 0L Oa8

The connecting mozent b, is therefore given by -

- By



2 2 . 2 =
4(3+2 W) 4(3+2x0.925) 19.4 19 .4
Ime to the ipncrease of the depth of the columns towards the upper cor-
ner, ﬂn will be increased by say 10% . Such an increase is however

allowed due to the possible redistribution of the maximum moments .
Hence M, = 1.1 x 82.5 < 90 mt

The heorizeontal thrust H is therefore given by:

B = M. /B = =20e & 11.6 tons

# 7.76

The field moment Hm is

mo= BT _w, o202 o _jome
8 - 8

The final check will be done for the dimensions computed to resist
the fellowing internal forces:

1) HMiddle section of girder M= 110 mt H = ll.Et (comp.)
2) Sections at sup." " M = 90 mt N o= 11.86° "
%) Top section of column H¢= 90 mt H = 4x10 = 4Dt COmP.

The chosen dimensions are just sufficient,

. For the final caleulations of the internal forces, the dimensions,-
the reinforcements, the stresses ... etée will be done for the real
axisrtaking the varition of the moment of inertia in consideration.

M, isg to be calculated for the direct uniform load from the slab plus
its own weight and the concentrated reactions of the secondary beanms.,
(Fig IV-10&11), It is préferable to divide the frame into strips of

#

=

L]
A LT TTTTITITY

IIP'

}
|

A1) FREL G

il | |||| TR TR | T T

Fig, ITv-11
convenient length and to tebulate the results as shown on page ag
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The direct uniform load is Eiven'byz
p:ﬂ.ﬁxﬂ-xﬁﬂﬂ+ﬂ.4:l.§1-25ﬂﬂ = 1000 + 1300 = 2300 kg/m
The average load breadth on the secnnﬂhry beame is 1—5-5 §-= 2.4 ms

So that the concentrated loads are gi?un by :
P = (2.,4x500 + 0.2x0.3x3500)5 = (1200+150)5 = 1350 x 5 = 6750 kgs

The moments of inertia of the girder and columns at the corner can be
computed for the enlarged section shown in fig IV-11.

Assuming that the regquired tension reinforcement at the middle
of the girder-is 10¢ 25 and at the cormer is 7 # 25 then , the typi-
cal details can be done as shown in fig IV-12.

yes ' _ ¥ 16
JE 5 s
_\,:\_\ s J/7/_
Yens

e |

Fig. IV-12 Reinforcements of a two-hinged frame

It is recommended to resist the corner moment of the frame by the

tension reinforcements of the column end not to introduce the bent

bars of the girder in the columns. It is elso not necessary to bend
the tension reinforcements in the columns - shown dotted - because the
normal and diesgonal tensile stresses are generally low, due to the
existence of big normdl compressive I0TCEeSs, moreaover, SsSuch BRpn srrange-—
ment causes undesirable movements which may lposen the reinforcement

-



Vo

= = | L= _\l

= fofr F Fy

"T\\ 148
poar = v %31 h
LY
L_\; sa0 _| E E 3
- et =
= Jo A _,l

! i

_PAINTE AND CHEMICAL INDULTRIES G.

_ﬂn}mﬁ Ef’ m:;utmﬂf f; miu-funw
Fiz, IV=




CETEE T K AN STLDIC

FETHILE OF pRIN FREMES

SEC. PLEN OF MEIN cHeOER A N

FFT
B T

| = _._m. ” _:.n. abcs
S R R A ﬁﬁ_l_,.g;n_nx#npﬂﬁﬁ-_- |
e —— e e Hre
e R e e =
. |z e
A p-z

2 ﬂ.m.m“ﬁlf \_m“,
T 8 w.,. 7] ’
ST ::_____:__:_u_.Jﬁ_._Ih_.wl.-_!m--__
. A—
M J//// - 7

N g L

XT Fig.Iv.id




dMring concreting operations.

Shrinkage reinforcements 10 mmg 30 cms orcgpl3 mg#ﬁ CHS are
1Eluntial to prevent the formstion of vertical craks between the sti-

fTUpS.

T The stirrups at the hinges in a height equal to the d:epth of the
s#olunn foot are to be duubledﬁta resit the tensile horizontal splitt-
dpg force due to the concentration of the reaction in the hinge.

We give in the following , .examples of some frames used as main
.Jlupparting elements in relatively big halls:

1) The rectangular frame of the main factory hall of the "Paints and

hﬂhamical Industries at Matariah™, shown in figure IV-13.
The frames are 24 ms, span spaced every 4 ms. and support & saw

$ooth roof in the form shown in figure VII-16. In order to have a con-
venient slope for the roof slab and sufficlent height for the windows
the depth of the main girder was chosen 2.0 ms. which is much bigger
then 1/16 of the span. Such a choice led to relatively thin columns
due to small conpecting momsnts,

?) The main frames supporiing the roof of the main studio at the T.V.
building, Caire, (fig IV-14); the span and spacing are 5.0 and 4.%ums
respectively. The cglumns of the frames were designed to suppert the
vertical reactions of & simple roof steel truss, for this reason, they
were 0.5 x 1.6 m only and no special provisions were made to resist
Lig horizontal forces. After executing the cast in place plain con-
trete mechanical pile foundations for the previous condition, it was
decided to cover the studio by a& reinforced concrete rocof. The space
available for the main girders was 5.40 ms which is the height between
Lthe upper two floors. It was also required to make the necessary pro-
visions for comstructing a suspended ceiling at the level of the lower
[loor to be uged for lighting mounting and control purposes. Frovis-
ions for big air conditioning ducts were specified.

Iue to these special conditions, the girders were assumed as par-
tially fixed to the columns. The connecting moments were limited by
the mexioum mozent of resistence of the columns and the maximun moment
wnd horizontal forces that can be resisted by the existing pile found-
ations.

The span being relatively big,all possible provisions were taken to

¥

¥ The determination of the reguired ares will be given later.
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paduee the dead loads of the rool slab and the own weight of the main
cirders. TFor this purpose, thne main girders were chosen such +hat
thevy pive meximum resitance sad sinigua weight by choosing a web 25
co5s thick: the enlarged width at the botton Was necessery Lo nave sui-
figient suace for the tension sieel. The openings &t the niddle of
the span are arranged for she air-conditioning ductes and to reduce the
irternal forces due to the own weight of the girder. The big haunches
betweeﬁ the web end the roof slab were necesS3aly tn resist the coSp-
rescive stresses of the girder. Due %o the big moment of inertia of
the roof slab at the girders, 1Ls {ield moments were very smell and it
wee possible to construct 1t as one way glab, 8§ cms thick. In order
to prevent the lateral buckling of the web vertical stiffeners were
arranged. The breadth of the main girder is incressed on the two sides
st the zones of bhigh shear stresses and to have a somooth gradual Lra--
nsitign from column to girder. The lower connecting cross-besams ars
arranged to simplify the copstruction of the required suspended ceil-
ing.

The fixing moments of tue glraer are resisted by the tension col-
uyan reinforcements; these Lelng = @ 25 mm then: (See fig iv=-15).

e ;I" qo¢ oL

{d

AE = 100 cmE 0. = 2 t/ca

G ' fonrrar L f::’(ﬂfwie}v"’

TR 100 = 2= 200 %

Fesultant F is given by* rlﬂf-:rﬂ-ﬂ-.?‘-e:'fdrr' Ph
F o= 1)/2 = zo0)2 = 282 ¢ /
This value is relatively Dig #* I?_
and acts on a length = 1/4(2n ),
the smaller the radius r, ibe r
B io & ; - s
ighber is the concentratlon of Fig, IV-15
the force F and the bigger the
splitting tensile Stresses CE . In order to resist C%P , the diagonal

corner bars shown in fig IV-14% are arranged.

) Fig IV-1c shows the deteils of a pelygonal frame used as the =alf
supLorting element of s factery at seiwan. The arrangement of the re-
inforcements follows the sene generzl siaople pranciples stated befare,
thet is, the tensiaon iD the outeside fiber of the cornsIs between the

columnn gnd the girder is resisted bY the reinforcements of toe ralumn

sné no reinforcements sre initreduced Irod tne girder in the columns.

The maxious {ield moment of s9is freme tanes place 5t The crown

1.
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osusing maximum tensile stresses at tbe lower fiber of the section,
These tensile stresses are resisted oy the main tension reinforcements
¢, 4,2 and f which must be sufficiently gnchoored in the compression zone
with & minimum anchorage length of 40 & .

Fig IV-17 shows that if the tension reinforcements are continuous
over a sharp corner as shown in (a), failure of the lower cover will

ca) (4) ()

Pig. IV=1Y

take place due to the action of the resultant force F. If g is smzll
a8 in (c), then F is small and can be resisted by additionel stirrups
placed at the crown of the girder. Their area of cross-section A_,

can he caleculated as follows:

F = 2 T sina -Ej_ﬂﬂaainu
1f the allowable tensile stress in the stirrups is Dét , then

jlB-t Ust' 2 Jrj‘s U; sina
or
IR % in
A - % —— 5 a
st s :
Gﬁt

However, if the
tension reinforcements
change their dir ection
on an arc of a circle
with radius r , then
every stirrup must be
able to resist a ten-
sile force F due to
this change. Assum-
ing that sing = tang ,
then , according to
fig 1IV-18, we get

Fig. IV-18

F/P = s/r but T = A_C,
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then

F "h'st 'U.*.I-t = J’;E -E.F3 BST
A B T

and Ay = e e

™ U;t

In fremes with sharp corners at positions of maxioum field moment
for example point ¢ of figure IV-19, meny designers arrange a haunch e
that shown in figure IV=19, but &8s the moments at pPoints c¢' have neaor}

-

ol
TS ITITT S dr#-"i

Fig. IV=-19

the same magnitude es that at c, then the horizontal and the inclined
reinforcements hE arnd As’ will be of the same order and need suffici-
ent enchorage lengths & as shown, Such an arrangement includes a big
waste in the reinforcements and therefore not recommended. A simplé
corner as that shown in figure IV-17b is more convenient.

However, in corners
where the internal comp-—
ressive forces C give. an

outward resultant F, sp- \ =T?f§5?h*ﬁu4
ecial stirrups of ares A .
Ay must be arranged to -#4; _=_1

resist it. Assuming the

allowable =tress of the s T P
stirrupscrat , then acc=- X Fig. IV=20

ording to ligure IV-20, we get

- A ., 2 =2- sipgn

Ast o a
st

=



h‘\m Hinged Frame With A Tie

2,/

Fig. IV=-21 Analysis of a two-hinged frame with z tie

A two hinged frame with & tie ss shown in figure IV-21 is twice
Btatically indeterminate. If the statically determinate simple frame
with a roller at b and tie cut is ohosen &5 main system, the conditions
of  elasticity will be:

1) The horizontal displacement El of point b eguals zero, or

b =
1 o

2) The relative horizontal displacement of the two ends at the cut
section-of the tie 6, must be equal to the elongation of the tie
under the effect of the load EE y OF

by wnlgli/ &, B
in which A, and Et are the afrént%ve area of cross-section end modu-
lus of glasticity of the tie. If the tie is made of reinforced con-
¢rete and is subject to tensile stresses that cause cracks in the COn-
crete, then kt and Et are the area of cross-sectiom and the modulus of
elasticity of the steel in the tie. The negetive sign is introduced

in the equation because H, scts in a direction opposite to .EE!'

The statically indeterminate values ars El at the lower hinges
and HE in the tie,

The equations of elasticity ere therefore:

T -
1 B B0+ By Byy +E, 6y,
ﬁ W == =
2 Ba LA, B, 8o+ B 8, +BH, 6, or
_ 5 5
Wi, O + By Oy + Hy (B, + LA E. )

- 5‘?‘_



in which

&
- j' MMy ds/EI

= the horizontal displescement of the ﬁain gystem at the level
of the lower hinges due to load

b -
j M M, ds/EI
= the horiz. displ. of the main
due to load

b - J.Hf ds /EI
= the horiz. displ. of the main
lewer hinge due to Hl = 1

2 3
= the horiz. displ. of the main
due to HE = ]
B85
= the horiz. displ. of the main
lower hinges due to EE = 1

= the horiz. displ. of the main

due to Hl = 1

e¥ystem

system

s¥stem

Eystem

sy¥ystem

The wvalues of the elastic displacements & are
nitude of Hl and H, may be subject to serious errors if the values of
b are not exactly calculated and if the egquations of elasticity are
solved by approximate methods (e.g. by the slide rule),

Io a frame adceb hinged at & & b and with a rigid tie de, figure
IV-22, the elastic deformatien EE of the tie is equal to Zero and HE
is much bigger than El. Moreover , if the elastic deformation of dc
and ce is neglected, then ¢ will be fixed in space relative to d and ¢
In this manner, the frame adceb with the rigid tie de subject to sym-
metrical load can be considered as & continuous beam of spans ad = h,
dec = ce = s and eb = h in whieh the two spans de and ce are loaded.
The bending moments at corners d,c end e are negative and the magni-
tude of the maximum moments is much smaller then in & frame without
tie. Fig IV-22 shows the lipiting ceses of the horizontsl thrusts and
btencing moments of a polygonal frame; case a shows the bending moments
and line of pressure of & freme without & tie, whereas case b shows

8 frane with a rigid tie.

1ie between the shown two limiting cases.

- 5B -

at the level of the tii

at the level of the

at the level of the tie

at the level of the

at the level of the tie

very small and the mag-

Eending poments of frames with elastic ties
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Fig IV-23 shows the details of a frame with & tie. The reinfor-
cements of the tie must be carefully anchored to the corner of the
frame; the anchorage length, measured beyond the point of intersection
of column, girder and tie, must satisfy the reguirements of the code
(min. %0 ¢). In order to prevent tbhe saging of the tie, hangers at
convenient distances ( 3-4 ms) must be arranged.

o fm ’,.n,.!":u

I TIL L I T T ] | 1 D O O

f’thnxﬁﬁf of prearure Line of presreire

i -4%;41':13 :
a L3850

7,

<

Pig, IV-22 Effect of ties on two-hinged frames
Because of the small horizontal thrust at the lower hinges, the
columns may be directly connected to their Tooting.

A rigid tie at the top of the columns gives & better distribution
of the internal forces in the columns and the girder although this does
not necessaily mean a more economic soluticn because of <he complica—
ted fofm work-and the big amount of steel in the tie and hangers. It
gives however a smaller herizontal thrust on the foundations.

A frame without & tie is simpler and architecturally more accep-
table than a frame with a tie and hangers.

If the feoundations of a frame cannot resist its horiz. thrust, &
tie may be arranged at the bottom hinges to resist the thrust. { Fig
IV-24). In this case, the frame 1is once statically, indeterminate
and the horizontal thrust B can be determined from the equation of
elasticity:

ﬁn-ﬂl;"fitE - & + HB

t o 1
so That
rfef& o
e 5o - ET
6, + 1/h; B Iﬁi‘éf . S
EI L, E



For elastic ties at foundavion level ; H is smaller than that of
two binged fremes withbout ties or with rigid ties, the result is that
the coroer messnt is smaller and the field moment i: bigg=r .

fu? £

¥ H
H_i!"”—i:';rar,r,‘rrgu _.-;nq-;_..u-ﬂl

r_ll g 3 )
ey O A ¢ Od EE——

Fig. IV-24 Two-hinged frame with a tie at foundatiom lewvel

Fixed Frames

In a fixed frame (fig 1V-25), the borizonval displecement, the
vertical dsiplacement znd the angles of rotatiosn at the points of
gupports a and b are Fqual to zero. 2 ’, =
1t i= three ¢imes =tatically inde— . l
terminate. The nature and sense of

the statically indeterminste values

o
e,

statisfying toe conditions of elast-
icity depend on the main system

which may be a cantilever, double

F T

Fig. IV=-25 Fixed frame

cantilevere, &5 sample beam, a fhree
hinged frame ... ete, The condi- -
tions of elasticity and the statical-=
1y indeterminate values for three different main systems of a Tectan-
gular frame sre shown in Tigure IV-2b.

The eguetiocns of elasticity in the three csses are:
b =0 =015+ %017 + X387, + %3 653
Bop= O mbop + X3 B0y + Ay bpy + X3 845

Gy =8 wlay ¥ I Ve b Ko Bas ® L By

o Y o
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Pig. IV-26 Different main systems of a fixed frame

In order to explain the problem, we discuss the solution using
the simple cantilever shown in a" as main system. In this case, the
displacenents ﬁl ¥ EE and 53 with single indeces give the three com-
ponents of the movement at the free end due to the loading namely:

6. = horizontal displacement,
§_ = wartical n ’

53 = zngle of rotation .

While in the displacements with double indeces, the first index indi-
cates the sense and the second the cause, e.g.

§..= horiz. displ. of free end of main system dues to load

10
.-El EE- wvert. in B i " " it " i " IE S |
E_El- angle of rot, = - " " " - = " X, =1 and so on

According to figure IV-27, the theory of vitual work gives:

Pig. IV-27 Analysis of a fixed frame
-5l -



- -J'I‘iny as/I , B by -Iﬁn: as/I , E 0, nIHn:ls.-’I

2
E 0y, '_[?E as/I , E By 'II AasL E 82y 'I A
ES,, =By = J‘:;y ds/I ,E b,5=Ebsy -I: ds/I ,E by=E6 5 = J'y_ as/I

If the free end of the mein =ystem is connected to a rigid member
with its other emnd at a point O which is chosen such that: (FPig.IV-28).

[sras/t = o s [xasm = 0 ana [y aes1= 0
then, the displacements of the edge at 0 will be identical®with these
of the free end and if the static- ; f

ally indeterminate forces Xy(= H) o Y

assumed acting at point 0 (called - r 2 “‘.lf,ﬁ' 4 -

the center of elasticity of the g s
frame) then the displecements . aom
1 ' I

[ +
ﬁ:lE = 521 = ..E.. ..x-r ﬂs,ﬂ % }
- Pig., IV-28
L /T -
523 - 552 . [ x ds/I are all equal to zero, and the equations

k=

of elasticity will be reduced to :

o - ﬁlﬂ' +* Il all or Il = = § 10 4 'ﬁll
So that

_!Hny ds/1

o T e et 2
) j;? ds/T
: [ x as/1

X, =V = =

e IxE ds/T
Hﬂ dsff

- Sat i I as /I

- B -



The HD',Hl (=1:- %) » My (=1 . x ) andH3 {due tulﬁ- 1) diagrams
drawn on the tension side are shown in their finmal form in fig IV-29,
7 v

il

== i1 |I"|.

= o R ke ...
F .‘. I ’ C
= F’ .I"'Fj X:: ”

Fig. IV-29

in this.mann&r, the determination of the statically indeterminate va-
lues is much simplified. The bending moment in any section of the
frame at x and ¥ from the principal axes of elasticity passing throu-

gh O is given by :
HI,F = Hu + Ii Hl + IE HE + 13 H3
= MD + 11 ¥ o+ IE X+ 13
- Hu + Hy +Vx + M

In urde: to simplify the determination of the internal forces, we give
in the following, the reactiong of & types of frames of extensive use

in reinforced concrete, onamely: _
1) Two hinged symmetrical rectangular freames.

2) L w o N frames with parsbolic girder.

3) om " " polygonal frames without & with ties.
4) Fixed symmetrical rectangular frames.

5 " " frames with parabolic girders.

&) " " polygonal frames. 1

- 63 =
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Continuous Frames

Continuous fremes are generally high grade statically indetermi-
nate. The degree of indeteroinancy depends on the number and type of
supports. Using the method of virtual work, the deteﬁinatinn of the
internal forces 1n the continuous frame shown in fig IV-30 can be done
in the fellowing manner :

% 7

Fig. IV=30 Continoous frame Fig. IV=31 Main system

This frame has & reaction components, the conditions of equilib-
rium being 3, then the frame is 3 times stetically indeterminate, Choo-

sing the statically determinte frame, hinged at a and supported on a
roller at b as a main system, fig IV-31 then, due to the loading, supp-

ort b moves horizontslly a distance ﬁl while point ¢ moves vertically
.a distance ﬁE and horisontally a distance & 5 The conditions of

elasticity are therefore: 51 = 0 -ﬁE = O and B 3 = o
To satisfy thega conditions, 3 statically indeterminate walues Il y
Ié and 15 are regquired.

The eguations of elasticity are given by:

by = o Bggody Dagoedy Sqavely Bag
EE-U- 5204-11 5211-12 EIEE,+I3 523

= - b ] S B

e ot Yy Ve tie Faa s P
in which : ;

BI8,o = [MM, as © T, EXb,; = [mm, as v ET by [y as
The L Hl . HE and I*'I13 diagrams érawn on the tension side and taking

the assumed sense of the statically indeterminate walues I, » X, and
13 in consideration are shown in fig IV-32.

BT e



If the frame is symmetrical in shape and loading,
the case in roof structures, then X

column is subject to axial forces onlj.

as is generally
3 equals zerc and the intermediate
In such a_caae the frame may

,«mf; +h2)

Pig. IV-32 Analysis of a continuous frame

be constructed with a slender intermediate column which can be assum-—
ed as u_panﬂulum. The system in this form is only twice statically
Aindeterminate. (Fig IV-33).

Fig. IV=33 Continuous frames with a central pendulum

Assuming the same main system (as shown in fig IV-31), the equa-
tions of elasticity will be reduced to:

&5 ‘.““'520*115‘21"_*12522

Figs IV-34 and IV-35 give the general layout , main dimensions
and details of the main continous frames of the printing, dying and

bleeching halls of the Misr spinning and weaving company at Mehalla.

- 7% -



As a result of the verious industrial processes accomplished in
toese balls, a big amount of hot chemicals evaporate. This hot vap-
pur must find its way outside fthe hsll. It is absolutely essential
. to take the necessary provisions so that the vapour does not eccumu-
laete or condensate inside the hall. In order to satisfy this requir-
enent and to facilitate the movement of the vapour, the roof slab below
the top windows was chosen circular and arranged &t the inner side of
~tone main girders. The wvapour being hot it moves upwards and, due to

the cross ventilation crezted by the upper windows, it is driven out-
werds without boving the possibility te accumulate or condensate.

During construction, the main tension reinforcements were replac-
ed by the eguivslent amount of cold twisted steel.

The upper monitor of the frame hes been cancelled in the end pan-
els of the hells at the end gables to get a2 better side view.

Toe Slope — Deflection Method

This method is one of toe oldest known methods used for determ-—
ining the connecting moments of statically indeterminate beams and
irames composed of a series of streight members, The study of one
single span elastically restrained at both ends is evidently of prime

inportance. (Fig IV-3&5).

Toe deformaticon anglesa and B can be determined according to law of
superposition from the following relations:

ﬂ=ﬂ°+ﬂlu1+HEuE

p.ﬁ'n"'mlﬁl"'HEﬁ'E in whiech

o, end g = deformation sngles of mein system due to given loads

l-'l.l w B 1 = ’ i n Wi " n om Hl = 1

E-E ™ ﬁ 2 - n , o L w n L] n HE’F 1 i hEII.GE
-

2, = 'EE- = for I = constant a, = .
6 | BT : 3EI
o+

e - | X! _dx 1

E e 1 m L1} a e ‘3
d @ E * = BEL 1
L
- 2

FHE - %— e —— ] ﬂE = __l-__
Jd = EXI AEI

aefer to "Theory of Elastically Hestrained Beams" by N.Eilal,
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!incnr&ing to theory of kaxwell, we have
M x!

: Ao W
g =] -2._ &x for I = constant En e =S
o - L EI | EI
g =JL s Wl ' i 8 =Bk
Bed | B " 2 LEy
e
- Fig. IV-356
where
ﬂn = area of B.HM.D. of main system due to given loads

n & T = the distances of the center of gravity C of the H¢ <" diagram
from the verticals through a and b

We consider in the following (fig.IV-37) a frame 1-2-3 with &
rigid joint at 2.

The condition of elasticity at joint 2 is : £ o
S0 that
B+a -qnﬂnhﬁlﬂl-rmﬁﬁé' +ﬂ¢+HEul+H§EE

- 95 o



or O = Hlﬁl + HE EﬁE."'”'Il B H}ﬂ:? + I:;En 'I-'ﬂ.::' )

For constant moments of inertia I and I' , we get

i
Hl—E-+H gt "EI}+I-'! 3. dol Qom

-

H""miﬂiun.

| M=

i #

Assuming
M = _I: i ._,.E..,__
s! I
T2a 'ﬂu /s
’ [}
Top = ﬂu] Sat
and multiplying the two sides of the eguation by L’ y We get —
sf
2 r
My R4 2, cu+1}+n5=_5{_52“‘_§?)

This equation of three moments can be used for determining the mome-
nts at the corners of two hinged and fixed frames with unmovable

jointe,
The following system of eguations can be written for the frame snown
in fig. IV-37.

1 -2 2K+ My U I e 7

T r
5= -6 ( -E2n4 22
= &

. r
2 -3 My + 2, e

l1=-2=<=3 I.'*ll'lﬂl-lr EE'EE (¥+ 1) « M

- T -



They ere sufficient to determine the moments Hl p HE and H; o

Frames symmetrical in shape and loading have generally unmovable
joints and the comnecting moments can be determined by the given equa-
tion of three moments if the members iz any rigid joint are not more

than TtTwo.

Examples .

1) Closed frame subject to in-
ternal pressure p/m &5 shown in
fig IV=38.

H_ = e - —E-
L I
The t:cr:lmacting moment M can be Fig. IV-38
determined from the equation
. Ty * hE L
MM+ 24 (K4 1 ) +Meeb (=Wt === ) = =5 (p==H+ p=>= )
b L 24 24
2 2
Maw-p L-hts £ 0
: 12 {(w+ 1 )
2) MTwo-vent closed frame subject to external pressure p as shown in
fig. IV-39. My
: : _ M M
= -I— . —Ez g

Due to symmetry, the inter-
mediate wall will not be
Bubject to any moments and

Al " 4
the only unknown values ave - __M_J|=|[|[|]|Ji[l|ﬂg_ - ||IJ1||=fH”mllfl_l_lﬂ__.__.:I
the connecting moments “1

and Ha.. Tous l -

: r,
l=2=23 ]'11'.“.1- a"l(-ﬂ.‘i 1} + HE - B -T__-
. - 2
or Hl (3n+ 2) + M - p—--L-
~
r Tz
2=-3-4 My + M, + By + My ._5(_.:&5+_%_}
2, 4 1 I
or =+ = = Pq—
1 2 o



These two eguations give

2 e
12(2%+ 1 ) 12 2+ 1

%) Fixed frame subject to uniform load p/m (fig IV-40). DIue to sy-

mmetry, the corners ¢ and d will
not move horizomtally; hence :

1
g - ‘:‘&!E‘H.q-lﬂnn.n lt_I-‘

or M, =~ ¥ M, (a)

a=c=d Ha'l-'L-r EHE {H+ 1) + Hy = -6 r. /|

Fig. IV=40
but M = M and r -DE;’E‘L then
[+ a & L8 | 1
I'Il‘rL + Hl: { 21+ 3) = = P[Eﬂ"- {b)

Equatinﬁ; 2 and b give .
[E .H lE
I - M =T = M = o= P.-_—--—
a BT 12w+ 2) e 4 6( %+ 2)

Continucus frames with unmovable joints can be treated in a sim-
ilsr panner as follows: (Fig IV-41).




Consider two successive spans [and |' subject to the loads ¥, , B
snd Fy' 45 Fo' ... etc, The elastic line and the bending moments will
‘be as shown ion figure IV-41. r

The condition of elasticity at the middle suppert is

s = Bmy
According to the law of superpesition, the angles of rotationf , u'
and $pcan be expressed as follows:

| 1 i T
I i
- L
b *n i chl i Hc 2
Due to the equilibrium of the middle joint, we must have :

=M+ K

HE 1 e -

Tﬁurerare, we get

I ] F i 1 [}
T+Ra= 0 ﬁg*“n+ﬂlﬁ1+”2ﬁ2+uld1*ﬁz >

i | -
Y+08=0 =03 +mu+Hlﬂl+HEﬁ-E+Hn 'F],"'H'u 9

Q

This system of equations gives a number of eguations equal to. that
of the unknown fixing moments,

Assuming that the moment of inertia of each span or Enlumn is constant,
and introducing the factorsy such that .

]

' i
'Hl-—I—‘—L—-:L '}L-—El—_..-l.'-.: 'H_nn-!-__h_
L I I L I{.‘-
we get:
¥ I i i
for a-bec My, + M, + M, U+ M, = =6 ( E- + 5 ¥)
1 g ey 2 : l
. g r To
n a=b-d My + 8, + 2L + M K =-8 { _I.-- +-£—'H.=}

This system of equations of four moments is sufficient for determin-
ing the values of the unknown moments as can be seen in the following
exzmples, '
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T TR —

Ixemoples
L ]

1) It is reguired to determine the corner moments in the continuous
frame shown im figure IV-42 due to & uniform load p acting on [1 .

Assume:
¥ owoote o B agndl.ml. sl  so that Ry =Ry =1
e
L £
_L| : ._
£ 11 L ’ '

Pig. IV-42

As the pirder is binged 8t5, no vertical or horizontal movement
of the supports will take place, hence the eguation of four moments
can be applied in the form given before as follows:

lﬂE“} EH.EH -H'E. + Eﬁ?-ﬂ + ]"15& . E - 5 rzb_‘,ﬂ"l = - p 1.'2"{4

2-3-4 Moy + Mg, s(2Mg + MM, = - 6Ty /| == P L E/n

2-3.5 Moy + Mg .+ My = —-6r,/l =-FP LEH"I-

in which Toy, = r?ﬁa = D ;r;,-"EJ-I-.

‘We have further:

The column 3-4 being fixed at its base, then the fixed point lies at
h/% as shown in figure IV-42 snd M, =~ EEGEE.

These eguations are sufficient to determine the unknown moments; they
Eive

> 2 .2 2
fin = = C.019 p | . Hﬁa = —lﬂ.ﬂEEE Pl 2 Hﬁb = - 0.0496 p

. 8
i =M, - M = -0.0166 p|° and ¥, = - My /2 =+ 0.0083 p|

BC . B b

The bending moment diagram, drawva on the tension side, is shown in
Figure IV-=4Z.
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2) 'The multiple frame shown
in figure IV-43 is symmetr-
ieal and symmetrically load-
ed. If the chamnge in length
due to normal forces and tem-
perature changes are neglected,
the joints can be assumed to
remain in position; and the
eguation of four moments can
be applied.

‘-l
kel
I

L

Assuning:
TSI SHR T : i £ N
L 1 I 1
T S Fig. IV=43
i | . ¥
L I:L
h
H.E- —I— = -—E and 15 = _":I'_ . ---|;|-—

then the egquations reguired to determine the unknown corner moments

are

1=3 2MyMy o+ My Ny om D g My o= o- My /2
.1-3-5 My %y + Mz My 5 2y Ky + MK, = O

1= St My My o+ My Ky 4 BMg o+ My = - 6.1z
3-5-6 - Mgy 1{2 + E;HE (M, +Mg ) + MUy == 6 TgaM /L
joint % H3a - M5E - ﬁ3¢ = 0,

Due to symmetry My, = M, and Mg = Mg

Figure IV-i44& shows the deteils of reinforcements of El Masaa sup-
porting multiple main frames at Fecca; it can be considered as & typ-
ical example for this system.

Eguation of three moments for fremes with moving joints

The corners of frames are generally not 'subject to horizontal or
verticel movements if there are fixed supports to prevent this movem-
ent or if they are symmetrical and symmetrically loaded, otherwise

T -
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the corners move from their position. Such frames can be treated as
follows: (Fig IV-45).

I
"H_ = ——EII- - -E—F
B o I
o el
8 I
[s]

Fig. IT-45

Assume that the two members 1-2 of length s and 2-3 of length s'
of a frame are rigidly connected at 2, and that the angle between their
axes is ¥ . After deformation, joints 1 and 3 move to 1' and 3'; the
angle between the new positions 1'~2 and E-:Ex‘ is -p' % Tue to the rig-
idity of the joint, the angle between the tangents to the elastic line

at 2 does not change before ané after deformation so that:

¢I— '-P— ﬁ--ﬂ-? -1-". —ﬂ.‘

or p—- 9 = b =P+ a

Hence, according to the law of superposition, we get:

A = ﬁ--n-cr.'-ﬁﬂ+I'11F!1+M2ﬁ2+u'u+HEE'J_+H5::'E

e 1 1 ]
The right side of this equation has the same general form of the equ-
ation of three moments given before. :

If we assume further, that the moments of inertia I and I' of the
members . s and s' are constant, and

TR - I 1% i ol o8
s, I E’g L

where s and I are the length and moment of inertia of a reference
menber, we get

6EI
o

s . r T :
B 0

= B =

o

~ B3 =



EEIn e
Calling ——==Ay= Ay . then

]
o

Ap= MU+ M, (H+U) + M31'+ 6 1— EL]»1.+ ~ER gl
3'

This equation gives the modified form of the equation of three moments
for frames-with moving joints. -

Fig. IV-46

Figure IV-46 shows & frame with rigid moving Jjoints, the change
Awpof the angles v can be determined from the given general equation
of three moments. . Due tuﬂupz y we get a change in the span Ll _p €qual
"to b ﬂ.'FE, so0 that the change in lln due to the coange .in the angles

of all the joints is given by
Multiplying both sides of the eguation by 6EI /s, we get

BEI
=2 :

B
]

15y mnd oomre Tixed in weeitisn e ALy,

‘u A

= 0 , and

Zha® = 0

If b is alsc constant, then

Saw= 0

The artlication of the method will be shown when solving the rect-
enguler frame subject to wind pressuse shown in figure IV-47a.

-



Zzup-ﬂ or ﬁ¢¢+md-ﬂ

4

hence :
2M. (W+ 1) + M EEEH + |M 24, (H+ 1) o
e AL S g TR =
So that 2
M, + My o= - L%
_ 4¢ 2% + 3)
Eut HE = whE J2 = Hh and Hﬂ = = Hh
13 Iﬂllxg‘l,
‘ -
3 'E?&E{ I
1T
£ ?L:‘g »e
l"'-r il
u.rf' 1.‘
28 fal
Therefore
2 2
e~ 2 = = L and
2 4 (29+ 3)
g .. Wb 5M+ 6
: 8 2R+ 3
2 ;hE 5H+ 6
Further; Hy=-H = ~ . X
B 2ZW+ 3
hE 2
and N MR - G |
€ 2 8 2w B

The bending moment diagram is shown in figure IV-47b.

If the unsymmetrical wind load w is replaced by symmetricsl and
anti-symmetrical loads w/2 as shown in fig IV-48b & ¢, the frame can

be solved as follows:

For casel: Symmetrical load w/2 , hence M_ = M,
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2 2
Eﬁﬂ {-H-"' 1} + HE, = &= -—--H— -E—'H_ nr H " “'h H.._F*
| 2 & ® 8 (2% + 3)

For case 2 i Anti-symmetrical load w/2, hence H = wh /2 , and

M, = - Hd = + _wh_
&

By superposition, we get

2 2 2

Hd o wh™ M D - SR, - et ‘ 2h+ B s
B (EM+ 3} 4 B8 2M+ B
Now o % wh®  mw®  wa o2
S B (2n+ 3) & B 2%+ 3

Continuous frames with meving joints

The same principles can be applied to continuous frames with mov-
ing joints using a modified four moment egquation. The solution can be
psuch simplified if unaimnutriﬂﬂl loads can be replaced by symmetrical
and antisymuetricel loads as sbown in the fellowing example of a con-
tinuous frame subject to wind pressure., Fig IV-49.

I b

- o g
1

T B

-Fh IR e——— w [T .
2. I




This case of loading can be replaced by the symmetricsl case shown in
figurs IV-50 and the antisymmetrical cgse sbown in figure IV-5]1,

Fig. IV=50

Case 1 ; Symmetrical case. Fig IV-50

Iie to symmetry HEG =0 Hﬁa = Hﬁb ='R5

Henece
1-b-5 M +I) B - _EE {a)
5 Oy Tty 2 n A
b5 . My + WMz + M =0 .or M, = --Eﬂ5 (&)
Equations (a) and (b) give :
wh?ﬂl uhzﬂl
My = = =—m——me—  and Mg = 4 m——mee
4%y +3) 7 B4 +3)
But H.h - wh® /4 =M, S0 that E =N, /b + wh/4
and 31 = &5 - 2wh . .1{..;.:_
4 iﬂl + 3

Case 2 : Anti-symmetrical case of leoading : Fig IV-51.

]
i1

walg

e
——
Ty

-

=B
=
—

FiE- H‘El

- 7 =



Due to anti-symmetry: M, = - M_ HEE = = Hegy » Nﬁa - Hjib - Hg, =0
So that Hfl-i.'.". = EHF@E

Ferther E.'L = 53 and BE = wWh = EHl

We heve ,»-"-'i”?n_ + ﬂ'p_‘;ifa-::} = O hence
M, Bt 1) # Mo, + -5 hE}L ( 2K
5 Sa 2" _;- , |+ 4 'Ea""EH'jr:IE JI=0 (a)
Feplacing Hﬁa by % Hﬁc » €guation a cen be given in the form:
. 2 _
2M,, {EH1 +35 ) % HEc {4112 + 3 )+ h;_ 1 =0 (b)

Refering to figure IV-51 , we find that

M, = Bib - wh® /8 , Mg, = —Hjh = - (wh- 28 )h

Substituting these values in equation b , we get

Mg 4+ 16%, + 18

wh
Hy ey _
| 16 "-1+E'J'LE+3
As EE = wh = EEl . we get further
g 5U, + B

HE [} " ——
a8 'fr'Ll + 3}{2 + 35
By superposition of cases 1 and 2 , we get

b [5':-1_1 + IE"H.E +18 ].E('I'Ll + l]}
+
-.H.1+E'H.E+3 "-I-'F'Llll-__'}

5»'H_l+5

H. =
1 16

wh ,
HQ:E T
1 5ot

o wh {Ell + 1GW E+1E5 _ 12{11 + 1) ]
el
16 Wy + 20 %3 B, o+ 3
Assuming I = EIl = EIE and L = 2k then
“1 = 1 ¥ “E‘ = .f.l. ﬂ-ﬂﬂ.

- BB =



B, = 0.558 wh A H, = 0,115 wh and Hy = 0.227 wh

1
The bending moment disgrams are soown in figures IV-8%,30 & 51,

- The following tebles give the velues of the bending moments at
the corners of continuous frames having two, three gnod four equsal
spans subject to uniform and wind loads. The moments of inertia of
the girder fln} and of the columns (I) ere essumed to be constent.
The reletive stiffness W is given by:

In il

'H'.::a—.—--

1 L

The bending moments are given in the form:

M =af( + pLE}u )]  for uniform vertical lead p/m ,
M owa{ + wh® J for horizontel wind lead w/m, and
M =a( + Wb ) for concentrated wind load W .

It has to be noticed here that

In case of reofs supported on continucus frames of the form
shown irn the following tables, the live and wind loads are generally
small relative to the dead loads so that for the main vertical saper-
imposed loads, the frames are symmetrical and symmetrically loaded
and the bending moments on the intermediate columns are either oull
or nil. In such cases, the intermediate columns may be chosen slen-
der and act as pendulums capable of resisting vertical reactions only
as gshown in figure IV=33, -

Symmetrical cases of loading can however be calculated by the
equatipn of three moments given on page 79 , while unsymmetrical
cases can be repleced by symmetrical and antisyumetrical cases,

Intermediate rigid columns are to be used in cases of unsymme-
triecal frames, heavy live or wind loads. ’

-



Bendipe Moments ip Continucus Frams With Two

Egual Spang

Fape Ly

Case 1 Case 2
i Mg = Moy = Myp M, Mpa Hypz Mg
0.05 | G.3125 | 0.3438 0.3150 0.3306 ©.01%2 | 0.0025
0.10 | 0.2941 | 0.3529 0.2986 0. 3280 0.0250 | 0.0045
0.20 | o0.2632 | 0.368% | 0.2705 | 0.3231 | o©.0853 | 0.0073
.30 | 0.2381 | 0.3810 0.2473 0.32187 0.062% | 0.0092
G.33 | 0.2315 | 0.3843 0.2411 0.3174 0.0668 | ©.0096
C.40 | 0.217% | 0.3913 0.2277 0.3147 0.0766: | 0.0104
0.50 | 0.2000 | ©.4000 0.2111 0.3111 0.0889 |. 0.0111
0.80 | 0.1452 | 0.407% | 0.1968 | 0.3079 | 0.0995 | 0.0116
0.75 | 0.1667 | 0.4187 0.1786 0.3036 0.1i31 | 0.0119
1.00 | 0.1429 | ©.4286 0.1548 0.2976 0.1310 | 0.0119
1.25 | 0.1250 | 0.437%5 0.1366 0.2928 0.1447 | 0.0116
1.50 | 0.1111" | O.4444 0.1222 0.2889 0.1556 | 0.0111
2.00 | .0.0209 | ©.4545 | ©.1010 0.2828 | 0.1717 | 0.0101
2.50 U.ﬂ?ﬁé 0.4615 0.0861 0.2784 0,18%2 | 0.0092
3.00 | 0.0667 | O.4667 | 0.0750 | 0.27%0 | 0.1917 | 0.0083 }
3.50 | 0.0588 | 0.4706 0.0665 0.2723 0.1985 | 0.0076
4.00 | 0.0526 Q.4737 0.0597 0.2702 0.20325 | 0.0070
5.00 | D.0435 | 0.4783 0.0495 -0,.2669 0.2114 | 0.0060
5.00 | 0.0370 | 0.4815 0.0423 0.1645 0.2169 | 0.0053
Multiplicator: p| 2 e
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Bepding Moments in Continuous Frames With Two Egquzl Spans

Case 3 Case 4
L Mg M1 Mp2 M Mg =Ny Mp1=T2
0.05| ©.1221 | 0.1221 0.1260 | 0.1299 0.2540 | 0.2860
0.10| ©0.1196 | 0.11%94 0.1268 | 0.1343 0.2576 | D.2424
o.2z0l o.1153 | 0.1189 | 0.1281 | 0.1s17 | 0.2639 | 0.2361
0.30| ©.1120 | 0.1113 0.1291 | 0.1477 0.2692 | 0.2308
0.33| ©0.171I | 0.1105 0.1204 | 0.1488 0.2707 | 0.2293
0.40| ©0.1093 | 0.1081 | 0.1299 | 0.1527 | 0.2737 | 0.2262
0.50| 0©0.1069 | 0,.1056 ﬂ.lﬁDEl 0.1569 0.2778 | 0.2222
0.60| 0.1050 | 6.1033 0.1311 | 0.1606 0.2813 | 0.2188
.75 0.1027 0.1004 0.1317 0.1652 0.2857 0.2143%
1.00| 0.0997 | 0.0967 0.1324 '9.1?11 0.2917 | ©.2083
1.25| 0.0975 | 0.0939 0.1329 | 0,1757 0.2963 | 0.2037
1.50| 0.0958 | 0.0917 0.1333 | 0.1792 0.3000 | 0.2000
2.00| ©0.0934 | 0.0884 | 0.1338 | 0.1844 | 0.3056 | 0.1944
2.50 | 0.0918 | .0.0861 0.,1341 | 0.1B80O 0.3095 | 0,1%905
3.00| 0.0906 | o.o8ss | 0.134% | 0.1906 | 0.3125 | 0.1875
3.50 | 0.0897 | 0.0831 0.1345 | 0.1927 *| 0.3148 | 0.1852
4.00| ©.0891 | 0,0B20 0.1346 | 0.1943 0.3167 | 0.1831
5.00 | -0.0880 | 0.0805 0.1348 | 0.1967 0.3194 | 0.1808
6.00| o.o872 | 0.0793 0.1349 | 0.1984 0.3214 | 0.1786
Multiplicator W hE W h

W - L.




Bendineg Moments in Contintous

Frames with Three Egusl Spans

-

¢
ﬂ!!l.‘.]"m""
. [y S ..r'
1 : : 2
3 4 EE .%L 0.05| 0.10] 0.20)/0.30 | 0.33 | c.40 | ¢c.50|0.60]0.75
N, o= K, .313| .295| .265|.242 | ..236 | .223 | .207| .193|.175
Case 1| My, = HES .I}u;: 351 | .362|.370.] .372 | .375 |.376|.583|.386
Hpo= Moo | 334 L334 | .337|.339 | w340 | 342 | .345|.347|.351
i, = My 322 | ,312 | .201|.273 | .268 | .256 | .ow1| . 228,213
Case2 | M, = M | 323 .315] .301(.291 | .288 | .283 | .276|.167|.263
M= M_- | .010| .020 | .035|.049 | .052 | .060 | .029|.077|.088
M, o= M, .009 | .016 | .025|.0%0 | 031 | .033 | .035!.035].035
Case 3| My = M 5| .020| .036| .061(.079 | .083 | .093 | .104|.112|.122
Moo= M.~ | +323| .315| .301|.291 | .288 | .283 | .276|.270|.263
My | =348 | .380 | .378|.391 | .394 | .401 | .408|.h14|,421
Case 4 MbE <339 | 34| .352|.363 ( .365 | .371| .377|.38%].390
M -080 | .077 | .073|.069 | .068 | .066 | .064|.061|.059
Myy | -082)| .080 | .078|.077 | .076 | .075 | .075|:074|.073
CasesS Hbz 083 | ,0B3 | .082|.082 | ,082 .*E'El-l JOBl| .081].081
M_-| .083| .082| .081|.079 | .079 |.078 | .077|.078|.075
Hﬂ;.,: .085 | .087 | 089,090 | .091 | ,.091 | .0G2|.095|.083
Md_ L088 | ,092 | .098 A0 | YOS | 108 sddl] 118 S T1B
M =iy 172 1 .177 | .184.191 | .192 | .196 | .200| .204|.208
Case 8| My =-M 5 | .2671 ,167| .167|.167 | .167 | .167 | .167|.167].1867
Hpp=liep | -162| .257 | .149|.143 | .141 |.138 | .135{.130{.125
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Bending Moments in Continucus Frames with Three Egual Spans

.?===::£L£:ﬂ==ﬁl

1.00

1.25

"1.50

2,50

%.00

6.00

Multiplica-
tor

.153
§ 390
s S50

«135

.392
« 360

-121
-394
. 504

+086
e
573

075
.398
376

« 398
=384

043

« 589
« 386

pL/t

186

254
. 102

167
« 288
-115

152
b2
121

« 125
1.235
134

« 110

230
» Lk

097
226
151

I'DEE
217

187

l'DE-‘E
.215
172

O34
«136
- 254

032
<145
- 288

030
«152
242

027
-161

4255

024

«168
« 227

.022
o172
226

015
182
- El?

.013
- 155
215

-455

439
418

J4S
- 425

« 430

452

457

« 4359

.053
.072
.082
.072
.09
.127

.051
072
« 0B
071
095
130

072
-083
. 069
« 095
135

+045
071
.083
068
095
-138

<043
071
L0835
057
095
150

L0481
071
. 084
~0&8
-098
143

039
071
084
.065

L1486

038
071
LO8EY
« 064
«096

.147|.

.219
llE?

-115 A

o222
«167
«111

227
«167
«106

231
« 167
.103

253
115?
100

235
167

- 25?
. 167
r{}g?

239
Ilﬁ?
L0094

281
. 167
-093

¥ h




SJandins Fooceois in Sontipuous Frames with Four Eoual Spans

a Io +b2 Jo Fex Je & e

MY ol

e 5 |0.50[0.10 6.20 | 0.30(0.33| 0.40| 0.50 | 0.60 | 0.75

ﬁi = B 315 295 | 266 | J282|.236| 222 | 206 | L1992 L1748

—— Fyp = Mgn | «343).351| 363 (.371 [.373| 377 .383 | .3B6| .391
= Moo = Wz | «334(.335| 339 | .384|,.346 | 345 | 353 | .357 | .363
Moo = M 5| -333(.332 .330 | .328|.327| .326| .324 | .322| .319

M, | -319].305| .281 | .261|.255] .243| .227 | .213| .195

Myy | -3271.321 | .310 | .302|.300| .295| .289 | .283| .277

Mym | -0O71.01% | .C28 | .040).0%4 | 051 061 | .O70 | .08B2

. M.s| «014].025| .043 | .055}.059 | .065| .073 | .08B0 | .0OB7
AR M5 | -319|.307 | .288 | .273|.269| .260 | .250 | .282 .232
Maz | -327].320 | .312 | 304,302 | .297)| .292 | .287 | .281

Mgy | +016].030 | .052 | .069|.074 | .083 | .0%9% | .103 | .115

M, | -00&|.010| .016 | .019|.019| .020| .021 | .021 | .021

T Hy | -3e4|.353| .367 | .379|.382] .388 | .396 | .402 | .410
Myo| o344(.352) 367 | .378|.381| 387 .395 | .401| .409

Case B1M o, = M 5| 331,351 ] .383 | .371(.373| 377 | .382 | .387 | .391
M 059 |.055 | 050 | 045,044 042 O30 | L0366 | .O3%

Myq | «O81|.059| 057 | .055|.055| 054 | .053 | .053 | .052

My~| -083|.063 | 084 | .065|.065| .065 | .06 | .OB7 | .068

o M.o| +063|.063 | 063 | .064%|.064 | .064 | .064 | .0B5| .065
Moz | -082|.062 | .082 | .062|.081 | .CBL| .CE1 | .0G0 | .0B0

Haz | -082|.062 | .061 | .061|.060 | .060 | .059 | .OSE [ .057

Figy | -OB4|.066 | .068 | .,070|.070 | 071 | .072 | .073| .O73

' | .086|.070| .075 | .o80|.081| .083 | .086 | .089 | .092

M, =-M, | .130|.134| .,241 | .147|.148| .151 | .155 | 158 | 182

cese 6| o1 =Hag | -126(.127 | .12¢ | .128|.128 | .128 | .128-| .128 | .128
2 Mpo =-VMsz | .122|.120 | .113| .112/.111| .109 | .106 | .104 | .101
Figp =P 3| .122].120 -117 | .1180.113] .112| .11 | .10 | .108




Bending Moments in Continuous Fremes with Four Foual Svans

Juuwmmm“:

1.00|1.25|1.%0 | 2.00|2,50 | %.00 | 3.50 | 4.00 5.00 | 6.00 Hult%giica-
151 | ,133 | .129 | .099].084 | .073 | 065 | .058]|.049 | .O41

397 | 402 | ;805 | L809|.412 | 815 | 416 ] .41E L20 | 421 =) 4
370 | J376 | 0381 | L380|.308 | .308 | .402 | .no4|.508 | .411 2
.315 | .312 | .310 | .306|.303| 301 .299) .298 206 | .29%

171 | .52 | .137 | L124].098 | J086 | .O76 | .063(.057 | .040

.268 | .262 | .257 | .249|.204 | 240 | .237| .235].231 | .223

.oo8 | .111 | .121 | .136|.247 | .156| .162 | .167|.175 .181

097 | .10% | .108 | .115{.120| .125 | .126| ,128).130 132 B}
218 | .209 | .201 | .191|.183 | L2178 | .17% | .170).166 | .162

272 | .265 | .260 | .253|.247 | 243 | .280| .237|.233 | .231

129 | .40 | .148' .180|.168| .175| .179| .183|.188 | .192

.ozo0 | .o19 | .o18 | .018|.01% | .13 | 011} .010|.009 | .00B

421 | L4628 | L4834 | Jaa3|.809| 453 | 457 | 459,463 | 466 :
419 | 427 | L4833 | L8482 .548 | (452 456 430 463 | 465

397 | .402 | J405 | (409|.412 | (415 | 416 | .418].4820 421 "
,oz8 | .o25 | .022 | .019|.006 | .O2% | .OL2 011/ .00c9 | .008

,051 | ,050 | Lo49 | .ouB|.o88 | .047 [ 047 | .047].048 046

069 | .o7 | .o71 | .073|.074 | .O75] .C75| 076 077 | 077

066 | .o067 | .0s7 | .068|.068 | .089 | 063 | .069|.07C 070 -
.0s9 | 059 | .058 | .057].057 | 056 | 030 L0556} .056 | 055

.056 | .055.| .04 | J052|.051| 050 | »050 | O30 LO4B | 048

.075 | .075 | .076 | LO77|.077 | .078 | .078| .078).079 079

097 | J100 | .203| .107|.109| 111 .113] .11 L1161 117

167 | .171 | .17% | .179}.182| .184 | .186] .188).150 .191

o128 | .128 | 128 | J128].127 | .127 |..127 1270 126 | L126 o
oga | .095 | .093 | LO90|.088 | .086| 0BG .08 082} .081

107 | .105 1ctl.105)| L2103 | L1c2| .A02).102) .10
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Multiple frames with moving joirts

Joints of multiple frames subject to unsymwetrical loads (€.g.
The eguations of elasticity are :

wind pressure) move horizontelly.
(Fig IV-52g8).

ﬂn.pe...ﬂ'ﬂ = seees AE0

+ AW = Sae

by +8%y =0, 4% Zac ’
Their opuober iz 10 &nd are sufficient to determine the 10 unknmown mom-—

ents althﬁugh they need a lot of time,
The solution can be much simplified, if the unsymmetrical wind

load shown in 'a' is replaced by the symmetrical load shown in 'b?!

and the anti-symmetrical load shown in ‘&' .,

£ & i T o s &
<38 ; —
! b £ (& E eH ¢
g8 S oA L 4,
3 ol o 5 T al § 5 'E~ a
= +
! 7 ¢ 7 v F
1 T % A 24 £ i o pd i i TR
Fig. IV=52
Due to symmetry of case b,
we have:
Wy = Mg v Bp, w My 0 Wy = Mgy,
HEJE- Hﬂ-ﬂ and HE“ = ME '
'|!I|"

whereas due to anti-symmetry of
case ¢, we have:

[l ==l

-I.IfrlI-JIII.IIElII‘I-!I'I!Il_IT

Hy == Hoy Moy = =My b 4b

M and H5 l—ﬁE

3e- T Mye
The bending moment disgram is shown in ‘figure IV-53,

The distribution of the bending moments in building frames dep-—
ends mainly on the relative stiffness of the members as shown in fig-

ure IV-54&,
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In practical cases of building frames, the bending moments can be

estimated in the manner shown in figure IV-355.
2, .
f T L

1ﬁL:¢N =J:.Grr :::?5?
. 24 /s
N __‘FJ?
=l;@h- =t= ey — ¢
¥ — i
| 2~
;51-@# = Py ____ﬂﬁi
1.5 Iy 2 1
P e AR -
Fa '
Fig. IV-55

One may mssume that the total shearing force -3 B scting on any of
the floors is distributed om the columns in proporticn to their mom-
ent of inertia Hence

I ; IE

1 5
Q= SH —odome ;  Qu=3E -
1~ 2(1, + 1) ™2 2(I, + I,)

The bending moments in the girders at inner supports may be ass-
umed equal; they must keep the eguilibruim of the jnlnts as shown in
fig. IV-56 which shows the egquilibruim of the joints at exterior and

-

% G. Frenz. Konstruktionslehre des Stahlbetons.Springer-Verlag Eerlin
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interior columns. P
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Pig. IV-55

Cantilever Frames

Cantilever frames are extensively used in simple statically det-
erminate plane forms as shown in figures IV-57 , 58 and 59,

Figure IV-57 shows the cross-section of an exhibition hall at
Munich, The hall is 40 ms wide and 12 ms high, each of the main Supp-
orting elements is composed of two, double-cantilever statically det-
erminate frames. The upper cantilever arm is ‘15 ms long whilé the
intermediate one is 10 ms only. The intermediate 10 ms in the roof
are covered by crytal glass windows. The soil being rocky it 'was pos-
sible to use isolated footings of the form shown in figure.

P

—

} CAN TrL oVeR HALL

_EXHIGITION AREA. MUNICH.

Fig. IV-57
Figure IV-58 shows the main stand of the parade area at Caire .
The main cantilevers are 21.5 ms long and 3.0 ms between centers. Due
to the architectural and structural requirements, the folded slab of
~ the roof is located at the bottom of the main cantilever girders
which have a maximun depth of 2.87 ms and a breadth of 30 cas{Sec. 2-2)
Due %o the big amount of tension steel required in the outside fiber

R
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at the joint between the cantilever and the main column, it was nece-
ssary to add diagonal corner bars of the form shown in figure IV-14
to resist the possible splitting tensile stresses.

275 17.55 | 307
+12.76 3 i 1 ]

o

k. Al ' " : %[
e E kmmm‘_;:’:u e — | 34:

1-5 B

Figure IV-59 shows thea layout, main dimensions and details of
reinforcements. of the television and broadeasting cabin in the parade
area at Cairo. The main supporting element of the cabin is composed
of two curved simple cantilever frames at 1.7 ms between centers. The
fiaX. cross-section of each frame is 30x250 cas reinforced by 30 @ 1™
on the tension side. During construction, the main tension reinforce-
ment was replace&ﬂh3321J§ 25 mm cold-twisted tor-steel of which, not
more than two bars were spliced in any section. Due to the high comp-
ressive stresses ip the girders, each one was provided with an unsy-—
mmetrical compression flange as shown in figure. The reinforced conc-
Tete landings of the staircase together with the foundation slab and
cross=-rib, and the top slab at level 18.75 Jjoin the two girders and
prevent any lateral buckling. Due to the concentration of the main
loads in the cabin, it was necessary to extend the combined footing
of the frames to 15 ms. The breadth of the footing, necessary to limit
the stress on the sandy layers in the site to 1.5 kgfcm? was B8.ms.

- : -



Boacial Forms of Framss

Simple and coantinuous frames can further be used in various forms
te satisfy certain regquirements as shown in the following structures:

1) Unsymmetrical simple or continuous saw-tooth frames as shown in
figure IV-&0.

E
by
L=

E
.
L
-
I o™ | e [
| ; |
CONTINUOYS _SOW-TOOTH FiRarMe
Fig. IV-60

2) Continuous frames as ghown inm figure IV=61

| ror | 70 | rp

-]

CONM TIA Lrohr M

Fig. IV-61

The system shown in figure is provided with hinges at the foot of
the columns and henee it is Five fimes statically indeterminate for
general cases of loading and three times statically indeterminate for
syametrical cases of loading if the main system is .chosen statically

o T



determinate; for exaaple, -by removing thé hinges a4t a & 4 and replac-
ing the hinge at ¢ by a roller.

The gtatically indeterminate wvalues and the reguired squetions of
elagticity for both cases are as follows:

a) General case of loading: e.g. wind loads. (Fig., IV-52).

Pig. IV-62

by =0-= Elﬂ + X 511 + X, ?lE + Xg 515 + X, 5l4 + Ig 515

= EED + xl 521 + IE 522 + I§ 525 + 34,524 +.I5 525

5z =0=d50+X) 85 + X 855 + X3 855 + X, Oy, + %5 85

W s Etﬂ.

o
H
o
I

b) Symmetrical case of loading: e.g. dead loads. (Fig. IV-63).
B A 5

A
I[db[dﬂ- X
-;!rf .I’r
Pig., IV-63
Sr=0=08,4+% 8, +% 8, *1_5513;-.
52 = ﬂ=620+x2.521+x2522 +3562§
S5 =0=850+ % 85 +X; 055 + 35055

The ﬁisplacementa with double indeces ajk can be determined acco-
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rding to the theory of virtual work from the general equation

The general cese of loading given under "a" can however be sj.mp—'
*1lified if it is replaced by a symmetrical case of 1na.:i:_ug and an anti-
symmetrical case of loading.

For the symmetrical case, figure IV—64, we have:

b i

and

Fig. IV-64

' Whereas, for the antisymmetrical case, figure IV-65, we have:

- Wife

]
)
=1

X 1

e Wyfr, - | _ Wit

S

Pig. IV-65 f

It is also possible to choose a statically indeterminate main
system by dividing the frame into three units and introducing rollers
at the joints of the side halls with the intermediate columns as shown

in figure IV-66.

Fig. IV-565



“In +this manner, the main system of the twe units I and ITI is static-
ally determinate while that of unit II}is once statically indeterzin-
ate.

For general unsymaetrical cases of loading the unimowns are Il'
%, , X;-and X, . For symzetrical frames symmetrically loaded, X, = X,
and IE = Iu , while for antisymmetrical cases of loading Il = = 15

and X, = = X, . If unsymmetrical loads are replaced by symaetrical and
antisyometrical loads, the unknowns are generally not more than two
and the problem is much simplified.

If a tie is allowed at the foot of ‘the arched girder, the system
shown in figure IV-67 may be used. i

Fig. IV-57

Each of the two main side elements may be considered as a two
hinged frame while the intermediate polygonal girder with its tie may
be considered as . freely supported on the two upper slender columns.

3) ZFrames gupporting sports stands as-shown in figﬁre IV-58.

It is fEcqmmanﬁEd in such a simple two-hinged frame to choose ite
form such that the bending moment alo@g "d-e" iz partly negative at"4"
and "e" apd partly positive at "o" and that the maximum positive and
negative bending mnmenfs are approximately equal.

Figures IV-69 and 70 give the general layout and details of rein-
forcement of the arema at the Cairo Interpationmal Fair-city. It shows
an ingenious application of a sipple idea to give a masterpiece in the
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in the field of structural engineering. In order to give the reguired
form for the main girders, it was necessary.to increase their breadth

at the outside support as shown.

4

4) Radial frames supporting the Planetarium at Cairo. Figure Iv-71.

It was reguired to construct a floor for the Flanetarium inside
cne of the main buildings in the exhibition land at Gezirah. It was
further specified that the new structure must be completely separated
from the original building and to arrange the supporting eolusns in
such a way that the use of the ground area for exhibition purposes 1s
possible in a convenient manner., The hall reserved for this purpose
was cireular, 30 ms diameter at ground level and 23,5 3s diameter at
floor level. ; _ ;

In order to satisfy these requirements, it was decided to support
the floor on 10 columns arranged radially along the rays from the cen—
ter-of the hall to the main intermediate columns of the existing buil-
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ding and at & ms from them in order to have adeguate space between the
two rows of columns., Figure IV-71 shows the general layout of the new
floor and its supporting circular beaas and radial frames.

Due to the loading, the frame ab has the tendency to rotate
arcund the lower hinge b pressing the inner ¢ircular ring beam at a ,

:} il

= = o s

Fig. IvV-72

so that each of the frames can be assumed as hinged at b and supported
on the circular beam at a as shown in figure IV-72.

The concrete dimensions and details of reinforcements are shown
in figure IV-73. ' '

5) Continuous frames with ties as shown in figure IV-74.

. The systems shown in figure IV-74 represent economic solutions
for halls of moderate spans because the slabs and secondary beams are
arranged in such a way that the axis of the polygonal girder coincides
approximately on the line of prassufa of the lecads. If the spans are
egual tp or smaller than 10 ms, the effect “of tﬁe elongation of ﬁh&
tie on ‘the columns is small and may be neglected. In this case, the
polygonal girder with its tie may be &ssumed as a shed giving for wver-
tical loads on the girder, vertical reactions on the coluans.

The internal foreces can be determined for one single span both for
vertical loads and wind pressure. However, &dequafa top reinforcement
oust be arranged and well anchored at the supports to resist the conn-
ecting moments that are liable to take place. '
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For vertical roof r

loads, the girder may J
be treated as a two
hinged frame with a tie, ﬁ 4
externally statiecally 4 !
determinate and inter— I
nally.once statically _315, I7-75

indeterminate as shown

in figure IV-75. The

banﬂing moments due to this case of loading are generally very small
Eiving relatively small concrete dimensions and reinforcements.

For wind loads, the
internal forces may be
determined for ome single
polygonal frame without &
tie as shown in figure
Iv-76.

The details of re-
inforcements can be done
as shown in figure IV-77. " Pig, IV=76
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V- YIERENDEEL GIRDERS

If the depth of the main supporting girder is reletively big, =
Vierendeel girder -as shown in figure V-1 may in some cases be used,

L] 1 e
[—— -

C L L O

A Vierendeel girder is a high grade statically indeterminate
structure composed of a top chord, a bottom chord and ver%icals nnly.
Internally, it is 5 'n times statlcally indeterminate; n being the num-
ber of the panels (fig V-2); whereas, externally, it mey be statically
determinate as in simply ﬂuppurted girders, oT. 1nﬂet&rmlnate as in
continucus girders.

The exect solution of a Vierendeel girder is relatively compli-
cated but essential 7f the members are thin compared to the height

- 11



of the girder. In reinforced concrete, the digensions of the differ-
ent. members, chords and wverticals are Eenerallf big end the fellowing
proposed approximate solutien is simple and gives acceptaple results
tor normal Vierendeel girders with parallel chords and verticals hav-
ing equall stiffness., Tne method can nowever be applied if tne Top
chord is polygonel, sLigntly curved or inclined. (Fig V-1).

1 & |6 |5 1A | 2 18
iy _aks 'F-ﬂ‘” L Jde
T m— Mg © —IT -;T T
W -

ﬁuﬁh&;} Aol ermenale mam -;!""1""" aral J.i‘iu..ﬁ::ﬁ:;’ inolelermnale fa#cqr
neg , honce syslem i 12 limes inlarae ¥4y ';fa.zr.:.f? IO (O O

Pig, V=2

Let us consider a vierendeel girder supject to concentrated loads
P and p. acting st the joints of the top and pottom chordas{rig v-3aj.
inese loads cause tne external pending moments My 5 Myy , == BTC. at
the joints (fig V-3%b) and toe shearing forces Ql » Qo 9 ees etc in

the panels &, , 85 s+ ete (fag V-3c).

Tne pending moments in the different memopers - peing not direct-—
1y loaaed - are linear {(fig V-3d) and can be determined froem toe exter-
pal tending mowents if the Pnlntﬂ of zero oending moments in the mem-

pers are HEnown.

ln-case of symmetrical Vierendeel girders with egually stifr
chords end verticals aunjact to symmetrlcal lomds, the point of zero
bending moients in any or the penels oI the top and bottom chords and
in the verticals msy be assumed at toe migale. If we imagine that
hinges are Lntruducad at the . above mentioned points of zero bending
moments, the girder will be {nternally staticaliy determinate and the
internal forces can be celculated as follows:

ASSUminE:

It o | and Il - IE E .ax BECa are the moments of inertia of

tne top chord, the pottem chord and the verticels 1,2, ... €eLC.
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Rt’mh‘HI‘HE -.. etc are the normal forces in chords and verticals
q‘l’. "qb"ql’QE‘ --- &tc w o Ehﬂﬂri_n_s forces w .tl " "
Ht'”bfulJHE --. 2bc ® " bending moments " L n n

Then: (fig V-4)
The normal forces in any of the panels say a, are gEiven by:

Bpy = =By =M /A

tension in the bottom chord and compression in the top chord . The

shearing force qul will be egually resisted by the two chords,

therafore
%1 = U =% /2
It has to be noted here that Q., = qtl shown in figure express

the vertical component of the resultant of the loads and reactions to

the left of the vertical through the middle of 8y and hence their

sense is upwards, whereas QbE = nt give the tertical cnmﬁnnent of
the resultant of the loads and reactions to the right of the vertical
through the middle of a, and hence their sense is downwards.

The bending moments to the left of vertical 2 are given by:

o |



Mpiz = Qpp-8y/2 and Mize = Qpy38/2
Therefore:

Mz = Mygo = Qg - 89 /%

Similarly

Mooz = Mgos = Qep - 8y S

1t is recommended to draw the bending moment disgrams on the tension
side as shown. :

The normal force in vertiecal 2 can be caleulated accnrﬁzng to figure

V-5 from the relation
By = Q = Qs = Bys
h
= (8 =R ) - P
. ( Fog* Pon ) = P i.e
> b2 t2 . t2 B
R, = *L{P =
2 5 b2 t2

The bending moments in the verticals can be determined from the equi-
libruim of the joints as shown in figure V-5; thus

Mop = Migo + Mian

4

Tﬁ& I a, __E#E__.ﬂr.

Fig. V-5 Fig., V=&

It has to be noted here that the known mnmanta_utlz and HtEE are exp-
ressed in figure V-6 by arrows giving their sense ; i.e. Meyos 15 clo-

ckwise (positive) causing tension at the lower fiber and compression
/8t the upper fiber to the left of joint 2, it will therefore be expr—
essed by a clockwise arrow from the tension side to the compression

= 115 =



side. Whereas HtEE is also clockwise but causing tension at the upp-

er fiber and compressiomn at the lower fiber to the right of the same
joint, The unknown moment M., at the upper joint of vertical 2 must

kEeep the equilibruim of the two moments Myqp and HtEE s therefore its

magnitude must be EQUal to their sum and its szense must be anti-qlﬁ-
ckwise i.e causing tension on the left side &end compression on the
right side of vertical 2.

The final bending moment diagrams drawn on the tension side are
shown in figure V-4,

The shearing forces at the points of zero bending moments in the ver—
ticals can be determined by dividing the bending moment at any of the

corresponding joints by h/2 .
The shearing forces Q, and the bending moments M, -and M, acting on

vertical 2 can alsoc be determined as follows:
Referring to figure V-4, we find that:
Qo = Bpp = Upp = Wy =By =~ (Mo -¥y I /0

l 3
= —HE.b -—QEth‘ -*—E-—{HEE—'HEI}

Moe
The bending moments in the chords can be determined graphically
by ﬂrawing vertical lines through the points of zero bending moments
of the chords to meet the sides of the external bending moment diag-
ram,. Through the points of intersection draw horizontal lines as
shown in figure V-3; the diagrams enclosed between these horizontsls
and the sides of the external bending moment diagrame hatcbhed diagrams-
give the bending moments to be resisted by the two chords. If the
chords are of equal stiffness, then each chord will resist half the

bending moment.

Beving determined the bending moments in the chords, the bending®
moments in the verticals can be determined from the equilibruim-of
the jeints shown in figure V-&.

The final bending moment diagrem drawn on the tension side for
the whole Vierendeel girder is shown in figure V-3d. Such an illust-
ration is very convenient as it gives the tension side and respecti-
vely the position of the longitudinal reinforcement in every part of
the girder. It has been further found that the diagonal tension in a
beam is in the.dirE¢tian of the sides of the bending moments diagram
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ir it is drawn on the tersion side. Hence, the direction of the dia-
gonal tension corresponding to the bending moment shown in figure V=34
will be in the chords and verticals to the left in the 1left half

M, and to the right in the right half E, see fig V¥-g,

If the moments of inertia of the chords or the verticals are ngt
equal, the points of zero Eending moments cannot be assumed at the
middle of the chords ar the verticals and can approximately be. deter-
mined as follows:

Assuge It ) Ib . I#l y IvE »»s Bre the moments of inertia of the

top chnr&:‘ the bottom chord and the verticals s - S etec., and

- . .
}LEt W g it = 1 is the relative rigidity of the top chord
L. ¥ & ’

t
I I, i
i = a - t = t " n | f ® n bottom chords
Eb T
I-h a H
It
" E mm— ——— "o m " - n ® verticals

If we consider the pamel 2-3, length 85, and ﬁssuma that ihe point-
of zero bending moment in vertical 2 lies at a distance Yo from the
top chord, and that the point of zero bending moment in the chords
=3 lies at & digtence X5 from vertical 2, fig V-7, it is possible to
Prove that:
i G R

- Ee—— =

= C

¢
-sz h-;rE ﬁ{.’ +H gt
and
e . T o G
——— = = E

So that
c
o t—i—-.h-kt.h
_Gt +1
And
C;
z. R - a



The external shearing force acting in panel a, is given by Q_, and
is distributed between the top and bottom chords according to the rat-

io= &
4 . ? o |

Qe = ¥y + R g 5 A
t2 az ] r I lf 1, L

I : I,
th = {1 - kt :' QEE 1‘ - - 5 1 ' -#

and

Heving known Q. and Q \ ' ) Z
in the different panels the o
other internal forces can be ' ”
easily determined as shown - J
before.

-

1f the loads sct direct-
1y on the top or bottom cherds,
the bending moments due to. these
direct loads are to be deter-
mined for each chord as s cont-
ipuous beam supported on the
verticals. Such bending mom-
ents are to be added to those . i
due to the concentrated loads
acting at the joints. FigV-8.

In this case, P, and Fy

gre the sum of the direct
loads on the joints plus the
reactions of the top and bot-
tom chords as continuous beams.

== marm i i B

The corners of 8 Vieren-

deel girder are subject to high Cus s
secondery stresses .50 that gir- Fig. V-7
ders free from corper cracks can B e L el

loaals al foinls

only be obtained by careful study _
MDD, ol Lo eniform

of the reinforéments and very good oy
execution, The use of baunches in '

the cormers is in this respect ,

where possible, recommended. . ' | Fig. V-8

The bending moments of this system change their sign in every
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panel so0 that a simple arrnngeaent'nr'th& reinforcements can cenly be
cbtained by careful study.

Its deflection is generally bigger than
that of solid girders.

It is generally recommended to use®this system when it gives the

only convenient sclution; especially because it is relatively expen-
sive,

Example:

It is required to determine the internal forces in the Vierndeel
girder shown in figure V-9.

As the moments of inertia of the top and bottom chords are egual
(= I) and the moments of inertia of the verticals are equal (= I_ ) ,

theén the points of zero bending moments can be assumed at the middle
of every panel or vertical.

~In order to determine the internsl forces:

l) DIraw the external bending moment and shearing force diagranms.

2) Draw vertical lines through .the points of zerc bending moment in

the chords (middle points); extend them to meet the sides of the e:tar-.
nal E.M.D.

3) Through the Points of intersection draw borizontal lines. The hat-
ched diagrames between these horizontals and the side

B.H.D. give the bending moments in the two chiords.
is subject to balf these values.

4)

8 of the external
Eash of the chords

The bending moments at the upper and - lower joints of the verticals
can be determined from the equalibrium of the joints.

5) The shearing forces in the chords and verticels can be determined
by diving the moment at the doint by balf the length of the correspond=—
ing panel. ' '

6) The normal forces in any of the chords can be determined by divid-

ing the ordinats of the external B.M.D. at the middle of the chprd by
~ the height of the Vierendeel h = 4%, '

Figure V-10 shows the details of & Vierendeel girder designed by
the auther in 1968. It gave the only convenient solutiom for the con-
trol area of the main studic in the television building at Cairoc. In
spite of the change of the sign of the bending moment' in every panel
and post and the relatively high diagonal stresses, it

was possible
by a careful study of the reinforcement to get the shown relatively
simple formes for the bars. A :

Baners



£ 2t et ¥ et rel il J:r )
1 o : L 1 ] ' | T T T
AP SO L O " S N T S R R 4
$.5 1 #8 128 | £5 | 26 | oF. I i }
: 3 |
1 ;‘Ft- JI L [ : s JI |
L | ! i i |
Il Epm. £ .r:-. ! 5 m. Fp. £ e,
|
- 3 | : |
- SRS | g !
o iy 1 '

|

= 3P0 -




dhar

EAIRO T V. MEN STLO/2

& e 2T Pprp ol
<o > . § — e
1/.['!/..//( ) \\ . \ T .r
Ny mwrm \
Al B s s AdlEr

2
"7
F £
F |
I w ._u.q =
+a e b 1o B ' E | 1 i ! Il 1 i i " 1 . . 1
5, b s e L P 1% _"._E_“Jr. 1| ] _._.c._\___x\“_“__ | [l | [Tt ] | Fi)
1 - s = A, () £ 1 ] B T | 1 1 ] ToEa | 0| d 1 1 £ 1 [ ] | ]
T ] Fr 3 .
m i o "h ET ) “ b _ £ g5F _ fad m J.8F = ._. ) ] A
Aol £5 :
I g K
_ e
5 3 )
Ty - 1 ¥ \\ \.\ £ its
[ —
e 2op25 P _
N Fr et |
"“nm o o
4l 25 ;

VIERENDES!  GieDEe
Fiz, T-10




VI- TRUSESES

Trusses in reinforced conerete are seldome. used; their shape is
generaly chosen similar te those constructed in steel. (Fig.VI-1).

om

Pigure VI-la shows & reinforced concrete truss bfiﬂge with par-
allel chords whereas figure VI-1b shows a reinforced concrete roof
truss with polygonal top chord. In both trusses, the members are main—
1y subjected to axial forces and small bending moments due to the rig-
id jeints . If, in ease a, we dispense with the disgeonels, we get &
Vierendeel girder with parsllel chords, in which case all members must
be sufficiently stiff to resist the bending moments, shearing forces
and thrusts acting on them as was shown in the previous article. If
in case b, we cancel the diagonals, choese a stiff pulygnnaitnp chord
and a slender bottom chord, the main girder may be treated as an arch
(or polygonal g;rﬂﬂ:} with. & tie, a system which is generally well
edapted for raiufurced concrete structures as will be shown lattr.

In special cases of saw-tooth roofs in which the north is parallel

o T i



to the span of the hall, the truss may give a convenient sglutien
which adapts very well to the case upder congideration. (Fig VI-2).

=

_DECTION

Fig. VI-2

It is possible to get 8 convenient distribution of the forces in
the members if the compression diagopals of the truss are chosen such
that they bisect the angle between the tension disgonals and the bot-—
tom chord as shown in figure VI-3, in which case the force in the ten—
sion diagonsl is egual to the difference between the tension forces
in the bottom chord at the connecting jeint. ‘Accordingly, the steel
reinforcement in the tension disgonal will be equal to the difference

Fig. VI-3

between the reinforcements of the bottom chord at the joint as shown
in figure VI-4 which gives the details of joint J.

The disadvantages of reinforced conecrete trusses are:

1) Forumwork of concrete and form of reinforcements are copplicated
and hence they are relatively expensive .
2) Bafety against cracking is low.

in order to aveid cracking of the tension members y Finsterwalder

proposes to concrete the compression members only first, after barden-
ening and removal of shuttering, the truss can be ertificislly loaded
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50 88 to stress the steel reinforcement in the tension menbers to high
tensile stresses. With the truss loaded, the tension me?héfs are to
be concreted and when hardened, the load can be removed.

The internal forces in the members of & truss are:

B - s

Fig. VI

1) The sxial forces N due to the concentrated loads at the joints,

2) The bending moments and shearing forces due to the eventual direct
loads on some members of the truss, and

%) The bending moments and shearing forces due to the rigidity of the
jnints.

The axial forces N due to the concentrated loads at the joints
may be determined by any of the koown methods of trusses with hinged
joints, '

The bending moments due to the direct load om any of the members
can be determined by the moment distribution method in which the mem-
ber under consideration is first assumed fixed at both ends and the
fixgﬁﬂgndpmgmgntg &ue to the direct load on the member are determin-
ad, then the unbalanced moments in the joints are distributed in the
usual way. .

The shearing force Q actinﬁ on any member is given by:

M. -H
A 8
q’qﬂ+ I

in which

Qﬂ = the shearing force due to the direct load on the member assumed

8s 8 simple beam.

Hr and HE are the final connecting moments at the right"and left ends
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of the member
! = the span of the member under considerstion.

Based on the assumption of Mohr which states that the deformation
of & pin joined truss is not so far from the deformation of the corr—
esponding truss with Tigid joints, the bending moments &nd the corres—
ponding shearing forces due to the rigidity of the joints can approx-
imately be determined as I‘l:u.'l.lt:ﬂ».rsl:wF
a) Due to the loads on the truss, determine the axial forces N in the
members a&ssuning hinged joints.

b) Iraw the Williot-Mohr displacement diagram, then determine for the
various members, the relative displacements of the endsp , that are
normal to the members.

e) 4ssume that the members are fixed at their ends, and compute the
fixed-end-moments M due to A from the relation:

. w s SEL. A
=7
The signs may be taken according to the known Erinterh. notations in
which the clockwise direction around the joint is assumed negative

and the anti-clockwise is assumed positive as shown in figure VI-5.

Fig. . VI-5

d} Applying the moment distribution method, the unbalanced nnmentﬁ
in the joints can be distributed in the normal way, leading to the
final connecting moments in the different members of the truss.

Example 1

To illustrate the application of the method, the axial forces and
bending moments in the members of the main trusses supporting the saw-
tooth roof of the machine workshop in. the forging plant at Helwan
shown in figure VII-17 are given. for the following data:

——

# Refer to "plane Analysis of Indeterminate Structures™ by Prof. Dr.
4.Shaker., Fublished by the Arab Writer s Cairo,

o, TEH,



gpan of truss = 18 ms height = 3 ms spacing = 6 mg

The inclined slabs are 9 cas thick, They are supported by the diagon-
als of the truss and inclined secondary beams arranged midway between
the trusses, s¢ that the slabs are one-way with a span of 5 ms,

In this manner, the diagonals of the truss are directly loaded
from the slab by a direct uniform vertical load equal to 1.25 t/m'.

Due to the own weight of the roof elements and slab loads, each
of the lower intermediate joints of the truss is subject to a concen-
trated load of 32 tons. The normal forces in the membars of the truss
¥ due to these concentrated loads are shown in Ilgure Vi-7a. The
Willipt-Mohr diagram giving the displacement of the joints is shown
in figure VI-6. The bending moments due. to the displacement of the
joints, the direct loads on the diagonals and the final bending mox-
ents are shown in figures VI-7b, ¢ and d.

It can be seen that the values of the bending moments in the mem—
bers of such a truss are not big and it may be allowed to design its
members for their axial forces plus & bending moment equal to:

M =% (N /10 + 0.8 EQJ in which

the thickness of the member in the plane of the truss

ct
1]

The biggest maximum bending momentin the diagonals consider-
ed as simple beams under their direct load.

=
]

Figure VI-B shows the general layout and main dimensions of the
workshop and figure VI-9 shows the details of the saw=-tooth trusses
used as main supporting elemenis of the roof of the structure.

In order to have a convenient shape for the menbers of the truss
and a relatively low percentage of the steel reinforcement in the ten-
sion members, the top and bottom chords, the diagonals, and the ver-
ticale have been cheosen with +the same concrete dimensions for each
of the threas groups.

Due to the direct loads of the slabs on the diagonals and the ri-
gid joints of the truss, the members are subject to bending moments M
and shearing forces Q. These bending mozments being small relative %o
the axial fnrnus'ﬂ, the maﬂber# are reinforced with sxmmatriﬁal gtrai-
ght bars only (i.e. mo bent bars are used). This is explained in the

following:
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If N iz compressive and the noraal stress U due to W] and N is

high say 50 kgfcmE while the corresponding shear SLress T calculated

from,the relaticn ;
T=@3/1Ib . Where

statical moment of area of the part of the section above the pl-
are under consideration about the c.g. axis,

Lre]
]

moment of inertia of section about c.g. axis, and

I =
section under consideration,

bt = breadth of
is egual to say 15 ksfcm; , then the principal diagonal tensile stress

U is given by:

o a2, 12 =_59+]/§EE_‘:‘+225=—'25+29-2

aaged e |
= 4.2 kg/cn®

which 15 relatively low and does not need any diagonal reinforcement.

1t N is tensile and the normal stress due tn M and N is high, say
BO kgfcm and the shear stress T is say 12 ksfﬂm then the primcipal

tensile stress Di is:

Ul=§§+]/i“¢.m+1m=m+4z=szkycm2

its inclination to the axis of the member is given by:
tan 2a = - .2T/0 - 2 x 12/80 = 0.3

which means that . -
E_nﬁ':’ 20 and o= 10

i.e, the principal tensile stress is nearly parallel to the axis of
member and again here no bents are reguired. ;

It has to be further noted that
the tension bars are anchored i- the
direction forming an obtuse angle
with the bar bscause if they azre an-
chored so0 that an acute ang. * is cre-
ated, undesirable high splitting ten-

sile stresses D;P are developed.(Fig. ¥I-10)

Fig. VI-10
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Exaaple 2

In the fnllnwins example we show the use of a truss, rigidly con-
nected to the columns, as the main supporting element of a heavily
loaded girder of relativnly big span.

Fig. VI-lla shows the general layout of the stage-roof of Helio-
polis Cinema and Theater. It i= ebout 42 me long and 12.5 ms maximun
 width. The reinforced concrete roof =lab, 12 cms taick, 18 supported
on crcss-girdurs of 12.5 ms maximum span. and having cantilever arms
of 7.0 ms maximum projection of the form shown in figure VI-1lb; the
digtance between the center-limes of the cross-girders is-- 5 ms. The
slab in the projecting part is arranged at the lower fiber of the can-
tilevars so that they act as T_-beams. The cross-girders are supported
at their cuter edges on two columns creating a couple to fix the gir-
ders and reduce their bending moments; their details of reinforcement
are shown in figure VI-11b.

This stage was originally censtructed for the natlnn&l theater of
the U.A.R. The main auppartiug element was a frame, il ms clear span
and 11.25 ms clear height as shown in figure Vi-12. In order to reduce
the bending moments due to the own welght of the girder of the frame,
% ppenings 1.5 ms high and 10.20 ms total length were arranged at the
middle third of the span. The effect of the possible concentration of
the stresszes in the upper nutsids corner of the frame due to the
change of direction of the tensile forces has been reduced by bending
the tension reinforcements around relatively big radii increasing gra-
duall: from row to row as shown in the details given in figure VI-12,

Euring cons=truction and after executing foundations, 1t was deci-
ded to raise the level of th& roof by 3.5 ms in order to have the
possibility of hanging t1mhar flpor for operation and control purpnﬂas
Twe to this change and because of the big loads on the main girder ,
it was decided to replaae it by a truss rigidly connected o the col-
umns in the form shown in figure VI-13 which gives full concrete dim-
epsions and details of reinforcements.

In order to reduce the reguired area of reinforcing steel and to

have a good distribution of the tension eracks high grade steel was
chosen for the tension reinforcements of the cross—-girders, the main

frame and the.truss. ”

To avoid splices, the main reinforcing bars have been supplied
with their full required length although they were relatively big.
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VII -SAW-TOO0OTH ROOQOF STREUCTUERES.

In big covered balls where a uniform distribution of natural
light, that is not possible from windows in outside walls, is reguir-
sd, the saw tooth roofs in which the light from the windows is direct-
1y reflected by the roof inside the hall,gives a convenient solution ,
tig VII-1.

For industrial buildings, it is generally recommended not to allow
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any direct nuﬁrgys to fall inside the hall for which purpose, saw -
tooth north light roofs, in which the windows are arranged to face the
north, ere used,

The convenient slope of the roof slab lies between 20° ana 50

with the horiszontal so that the concreting can be dome without double
shuttering. The windows are either wverticael or inclined with & max-

imum angle of ca 15% with the vertical.

In order to have sufficient uniform light inside a hall, the area
of the windows must be bigger than 20% of the horizontal area and the
spacing between them to be maximum 10 me. The steel sections required
for the winddws being proportional to thedir area, it is recommended to
divide the windows by reinforced conerete posts at 2 to 2 ms between
centers.

The saw-tooth slab type shown in figure VII-Z gives the simplest

R N
/1N o ;‘Tx
13 W PR
1y /1A
iy Br (Y
f 1 \ / Iy
ff Lo\gy | \ P
|
/ i ¢ ! \ Past Past

form of this system. Its structural elements are:

The inclined slab supported at its top edge by the ridge beam and at
its bottom edge by the¥ ~beam, the upper continuous ridge beam supp-
orted by. the inelined posts which are again supported on the ¥ - beam
and, the continuous ¥ — beam supported by the main columns. If the in—
clination of the posts is big, a tie is to be arranged to resist the
borizontal thrust of the system. -

As the rain water is accumulated at the lowest peint of the slab,
it is essential to choose the form of the Y - beam so that there is

- 1T -



gufficient space for the rain water and the necessary slopes of the
gutter. (Pig VII-3). :
The statical behavior of the system can
be shown if we consider the eguilbruim‘*of a
frame composed of a slab of breadth B hinged
at a and supported at b on the post be (Fig
VII-2). Assuming that the slab thickr=ss

t = 16 cms
the post be 20 x 16 cms
the disztance between centers of posts

B = 800/3 = 266 cms

the span of the slabl _ = 2.5 length of post lp
then, the moment of inertia of the slab is

I_= 266 x 167/12 = 91130 cm’

and, the moment of inertia of the post is

IP- 20 x 16°/12 = 6830 en

The relative stiffness W of slab to poest is therefore given by:

X L :
i s o o R L e

ly I, 2.5x 6830 ~

This means that the pest is very slender relative to the slab and can
be assumed as a pendulum that can resist axial forces only i.e. hing-
ed at both ends b and c. Therefore any of the units of the saw-tooth
may be assumed as th&aa hinéid.

Assuming further that the desd weight plus the superimposed loads
on sleb ab for a breadth B is W, then the reaction at b is equal to
El acting in the directiom of cb and the reaction at a is equal to EE

acting in the direction ef aoc where o is the point intarsectinn of W
and Rl. " |

Considering now two adjacent panels of the saw-tooth , we find
that the reactions at the intermediate support are egual to K, from
panel abe and RE from panel cde, their resultant is again vertical and
equal to W. The horizontal components of RE at a and Rl at e are the
same and egual tn H, If the posts are vertical then H ='o and if their
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inclination with the vertical is sma}l (<15° ), then H is small and
can be easily resisteéd by the hu;ni#i columns. °If the inclination of

the posts- is big, H is big end arranging a tie is recommended.

Eﬁa Previous investigation shows that the inclined slaE mey be
considered as simply supported. The reaction at its top edge can be

assumed in the direction of the supporting posts. (Fig VII-4).

" The ridge beam is continuous
over the posts. It carries in ad-
dition tﬂ.itl own weight, the re-
action R, of the slab acting along
its axis. -

The posts carry the reactions
of the ridge beam; they can be ass-
umed as axially loaded.

The intermediate YT-beam is con-
tinuous over the main nnluﬁna; it
carries, in addition to its own weight,
the reactions of the slab, R, at its
lower edge as a urniform load and Rl
&s concentrated loads transmitted
through the posts. If the interme-
diate posts in a span are two or more, the load on the beam may be ass-
umed uniform and vertical. For resiﬂfing the field moments of the ¥~
beam, the section may be assumed as rectangular with breadth b and depth
t (fig VII-3), whereas, for resisting the connecting moments, the bre-
adth is b and the theoretical depth over the columns is equal %o the
distance from the'cqntar of the tension steel over the supports to the
lower surface of tha.aqmprensinn zone.

‘The outside beams are contipuous over the outside columns, the
load on the beam at a (fig VII-2) is uniform, inclined and equal to E.,
the loads on the beam at e are concentrated, equel to the loads con the
Posts and act in their direction. ‘If the inelination of the post is
big, it is recommended to arrange a horizontal beam as shown.

Flg, VTII-4

From the econonic ﬁuint of view , & one way =o0lid slab as that
shown in figure VII-2 may be recommendéd if its thickness is smaller
than or egual to ~16 cma which eorresponds to ;'distance'hetuaan the
windnHE{KE.ua. For bigger spans, a one way hollow-block or ribbad slab
may be used. Cross ribs having the same cross-section and reinforcement
a6 the mein ribs must be arranged; for a slab span 48 ms, one cross rib
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and for 8 m{ | {10 ms two ribs. (Fig VII-5).

For big saw-tooth spans, it is possible to get very egconomic sol-
utions by arranging secondary inclined beams (2 2-3 ms, supported at
thqi; upper edgé over the posts and at their lower tdge over the Y-
beams, giving a one way slab whose main supporting direction is normal
to the inclined direction (refer to fig III-15). In this manner, the
thickness of the =lab is B8 to 9 cms. For the mentioned structure, the
span of the sauvtauth iz 10 ms, the spacing between the secondary in-
clined beams is 2.5 ms which means that the slab is one wh! and con=
tinuous over the secondary beams. Its s is 2.5 ms and its total
load normal to the roof is max. 350 kg/m" giving & thickness of B cms.

The inclined secondary beams may be assumed simply supported. As
the posts are vertical, then the reagtions are elso vertical and the
max., bending moment is given by: (Fig VII-6). '

[
Moax = WiI/B .
where . £ §
v = Ltotal vertical load per meter beanm ' Fig. ?IIﬁE

#

| = horizontal spaﬁ and l' = inelined span of beam.

In our case | = 10 ms and the beam is 20 x 63 cms only because it be-
baves as a T-beam.

The average thickness of the slab and secondary beams is therefore
B + 20 x 55/250 = B + 4.4 = 12.4 cms  only

In some cases, e.g. dusty
and smoky halls, a plane roof
is required; in such cases the
beams may be inverted (refer
to figs VII-17 & VII-Z21 ) ;
but becasue the slab lies in
the tension zone of the beem,

the sections behave as rect-
engular and need bilgger dep-

ths, In some cases it may be
convenient to choose’ a beam of variasble depth 88 shown in figure VII-7.

In order to be able to drain the rain water, a steel plpa of 5" min .
cdiameter must be concreted inside the web.
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The main columns are to be calculated for the vertical reactions
of the T-beams plus the bending moments dug to wind; these may approx.
be assumed as shown in fig VII-Ba, if the columns are of equal moment
of inertia and the wind loads are assumed concentrated.

w /e

Fig, TII-8a
If the wind loads w are !E-Euu&d uniformly distributed we get:

For two columns of equal moment of
inertia: (Fig VII-8b).

5
= e h i
X -E L

H'I——%E'i‘hg.l

My= 4 -2— wh®
16

For three cclumns where the moments
of inertia are not equal, we get :

(Fig VII-Be).
wrfrm
Il'- —E— wh L:—I—E and ; o
I - 2+ k .
X= ~2- wh —-1o- where k=1,/1 P“jiﬂﬁ
B 2+ k

Theref
ﬁ==ﬂa§“ 5+k M a 2¥B
B ‘Zak TR 8 2+ k



For four columns , we get : (Fig VII-8d4)

Xy X1z Xz
3T TI

E

Fig. TII=-84
X, = 2. wh it 2K I, = - wh
16 1+ k 16
Xy - e g g S
16 1+ k
and
whE 5.+ 2k whE 3E_ :
H Eme—— '- I'.Il S, e H-E = Hl
16 1 + k il 1.+ k
P G R
FOUE ek

It is however possible to get reascnable dimensions for the saw-
tosth roof elements if triangular frames are arranged at convenient
distances verying between 5 and & ms as shown in figure VIiI-9., This
system is generally used for distances between windows verying bet—
wasn 7 Bnd 10 ms. i

¢ u Tuin e

fig, VII-9
In this case, the different elements of the saw-tooth reof ere :
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1) The s5lab:

Irdi: generally two way; its rectangulerity is to be determined
tor Ehe gide lengths |, and
{. measured ia the plane of
the ‘slab. TLe componeant of
the load normal to the slab
only causes tha bending mom-
ents and Eheafing forces .
(Fig VII-10) .

2) The ridge beam: m
I+ is continuous owver the i ; |

posts and frames, it carries, L 4 ]|_, E |

in addition to its ‘own weight .

the triangular load shown act- Figse VII=10

ing in the .direction of the axis of the beam. The equivalent uniform

loads on the different spans are not egual.

3) The posts:
Thése are axially loaded, earry the reactions of the ridge beam -
and transmit them to the Y-beam.

l[||[| D

4) The Y-beam:

It bebaves as & continuous beam, of spans| , supported by the
main cclumns. It carries, in addition to its own weight, the trian-
gular load at the lower edge of the slab plus the concentrated loads
from the intermediate posts. If these posts are two or more, the T-
beam may be calculated for an eguivalent uniferm vertical load in the
usual way.

5) The triangular freme:

It carries the tapezoidal load from the slab plus its own weight,
both may be replaced by an eguivalent uniform loed in the usuml wWay.
The internmal forces can be determined by one of two methods:

'Firat method: as a8 continuous beam

- Neglecting the elastic deformation of the tie ac, then points a,
c and e may be assumed fixed in pesition and concegquently points b end
d vax also be considered as fixed in space. In this manner, the con-
tisaous frame can be considered as a continuocus beam abcde of unegual
spans | 1 and l2 y ‘unegual moments of inertia Il and’ 1 and urequal
losding w, and w, . The moment ‘of inertis f' is to be determined for
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& T-section with breadth of flenge B = Et + b in which t is the

thickness of the slab and b is the breedth nr the web and I tu be de-
termined for the rectangular section of | 5 « The load W ﬂnl 5 WAy
be ueglectad without making an appreciable error. (Pig ?II—llJ.

o [ wry L (M o i &=
L, FE LA Sk
l' & <a & 7
|' : I I

Second method: gs isclated triapgular frames

If the continuity of the two triangular units at ¢ is .neglected,
each unit may be calculated as a triangular frame with a tie 4in the

usual way as follows: (Fig VII-12).

Bt L
: i . &, R
The tensile force H in the tie i8: H = — —oe = - =
' 1 Hl d= i
+

According to figure VII-1I, the connecting moment at ¢ may be estima-—

ted ~eaqual to Pb é
It is pracvuically sufficient to determ;na the, internal forfes

due Lo wind pressure for a single frame neglecting the tie.(Fig VII-13)
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The details of reinforcements are shnw; in figure VII-14.

1f north light is required in big Y
span halls without intermediate supp- e
orts, the choice of the system of the
main supperting element depends on the . W %
dimensions of the hall and its dispo- l b
sition with respect to the north. For-
a ball with the span parallel to the
north, frames at 46 ms between centers
qpanning the shorter dimensicon of the Fig. VII-13
hall supporting saw-tooth roofs arranged according to any of the forms
shown in figure VII-15 may give a convenient solution,

=l Iﬂl“

Figure VII-15b shows a saw-tooth roof arranged above the frames,
it gives a big construction bheight which may be reduced if the saw-
tooth slabs are arranged in ‘between the frames as shown in fig. 71I-15¢
This new solution may need a bigger depth for the main girder giving
sufficient space for the windows and the beams supporting the slab ,
The rain water can, in this case, be drained by inserting 3" steel
pipes in the web of the main girder at the lower edge of the slab. Cme
can dispense with the pipes if the saw-tooth slabs are arranged as
shown in figure VII-15d in which the rain water passes free below the
main girders and the lower beams are hung to the frame by steel rein-
forcements sufficient to resist the reaction of the beam.

The truss shown in fipure VI-2 gives another typical solution
for the hall shewn in Figure VII-15a. The construction height of trus-
ses (ca 1/6 - ij? 1) being relatively big, this solution can be well
adapted for bigger spans. '

We give in the following thé details of two typical structures.
The first structure is the main factory hall of the ™ Paints and Che-
mical Industries" at Matarieh. Figure VII-16 gives the general layout

and the concrete dimensions of the main supporting frames of the fac-
tory ball, the details of reinforcements are sbown in figure IV-13.

The machine workshop of the "Forging Plant" at Helwan (Fig. VI-B,2)
gives the second typical solution for this type of structures.

If the north is parallel to the longer side of the hall, i.e.,
normad to-the span, the following systems for the main supporting ele-
ment may be used: (Figure VII-17).
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1) Two-hinged frames (Figure VII-17b) spaced every 4—6 ms; the req-
red depth for the main girders varies between 1/1% and 1/16 L. .

2) If the clear construction haigh necessgary for the hall does not
allow for the reguired depth of the main girder or for bigger spans
where the use of a simple frame gives heavy eross-gections, a Vieren-
deel girder (figure VII-17¢), in which the saw-tooth roof iz supported
‘at its upper edge on the top chord and its lower edge on the bottom
chord of the girder, may be used. The depth and spacing of the girder
must be so chosen that they give 4 convenient slope for the saw—tnnth

slab.

3) The two-hinged arch with a tie shown in figure VII-174 gives ano-
ther convenient aystem in which the saw-tooth roaf is supported at ite
upper edge on a horizontal beam, parallel to the main girder and EUpD—
orted by it, arranged at the crown of the arch and at its lower edge
on the tie hung to the arched girder by hangers spaced. every 2.5-4 ms,
It is recommended to arrange the hangers and the posts along the same
line so that they form one element.

The main workshops of "El-Nasr Forging Flant" at Helwan give a
typical example for this last solution. Figure VII-18 sivEs the gene-
ral layout and main dimensions of.the workshop and.rigura VII-19 shows
the details of reinforcements of the parabolic arch used as main supp-
orting element as well as the details of the crane girder carrying the
rails of a 10° crane giving the wheel loads shown in figure VII-18,

This workshop is 24 ms wide, 8% ms long and 12.5 ms clear height.
It is used for forging operations and includes a series of furnaces
which necessitate sufficient uniformindirect light and good wventilation
Secause the hall is dusty and smoky, a plane roof surface is specified,
The hall is provided with a 10° crane; the elear height below the cra-
ne rail is 9.9 ms and is 2.5 ms above it. The workshop is_divided into
3 blocks, 2B ms each, by two e:pans*ﬁn Joints.

To satisfy the specified reguirements, a north-light sav—tucth
roof with a plane bottom surfase was chosen.

The span of the hall being relatively big, an arch with a tie as
the main supporting element for the roof was prefered. To reduce the
construction height of the structure and to get a reascnable distance
betwaen the arches, the ainimum rise of L/8 = % ms was chosen . To
get.a convenient slope for the saw-tooth roof, a minimum spacing of
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7 ms between the arches was necessary. In order to reduce the thickn-
eas of the slab, inclined secondary beams % 3 ms are arranged; the
beams dre inverted to give the specified plane bottom surface of the
roof. ' :

In this menner, the roof is composed of & one-way continuous slab
3 mgs gpan and inclined simple beams, 7 ms horizontal span. The total
vertical load being 350 kg /u° surface, a slab thickness of 8 cus and
secondary beams 20 x 60 cms were sufficient. '

'The arch carries its own weight plus the loads from the roof
“which are transmitted to the arch ad concentrated through the second-
ary beams and the supporting posts and ties. In order to simplify the
construction of the main girder and to redice the bending moments to
& minimun, its axis was chosen polygonal with the corners coinciding
on a parabola following the eguation: (Figure VII-20) :

y=42%§

in which k
_ R "o

tex/l ana %= xv1 Fig. VII-20

Assuning the loads as uniforaly distributed, then the internal forces
in the arch can be qstinatad in the following mannep:

Loads from slab 0.350 x 7 x 1.15° = 2.8 t/m!
Ioads from secondary beams 0.2 x 0.52 x 2.5 x 7 x 1.15/3 = 0.7 t/m"
Own weight of the main girder 1.2 t/m?
Concrete for slopes of gutter+rain-water+windows ... = 0,3 t/m"

Total weight = 5.0 t/m'

Due to the elongation of the tie end the elastic deforuation of the
arch girder due to the normal force, the horigzontal thrust H may be
estimated by 0.95 of that of the corresponding three-hinged arch K,
1-‘“" .

2 2
For a three-hingesd arch H = !1— = 2.X28 = 120 ¢
L - = 8 £ 8x 3
For the two-hinged arch B = 0.95 Hﬂ = 0,95 x 120 = 114 %

& H H =-H = 6t

o
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The maximun bending moment X is therefore

max. M = Bf =6 x 3 = 18 mt
Accordingly, the arch Eirder can be estimated for a normal force N
egual to 114 + and a bending moment & egual to 1E'ht. A ecross—sgection
35 x 80 cas (t = /30) reinforced by 0.8 to 1.2 % normal mild steel
was sufficient. The reinforcement is Symmetrically arranged in +the
cross-section and the- splices are staggered so that not more than two
bars are spliced in any section.

The tie can be estimated for a normal tensile force of 114 t. Its
tension bars are synmetrically arranged in a cross-gection 35 x 40 om
without any splices. It is however recommended to use high grade op
cold-twisted steel in the tie as it is of higher strength and has big-
ger bond with the conerete.

The arch was assumed externally statically determinate ( giving
vertical reactions omly for vertical loads) due to the existance of
the slender parts of the supporting -columns,

I% is clear that the Systems shown in figures VII-15 & VII-17 may
be of one or more spans. As an example, we show in figure VII-21 con—
tinuous frames spaced every > ms and supporting a saw-tooth roof with
the north normal to the span.

—

Fig. VII-21 A symmetrical continuous frame with intermediate pendulum

Becaugse of symmetry in shape and loading, the intermediate columns
will be, due to roof loads, subject to axial loads only; it is there-
fore recommended in such cases to choose a continuous frame with & sl-
ender pendulum suppert in the middle. '

Factory 135 at Helwan, shown in figure VII-22 gives another typi-
cal solution. In this factory, the rcof is saw-tooth 10 ns span suppo-
rted on main girders (normal to the morth) 15 ms span. The details of
the different elements are shown in figure ITI-17.

Folded plates and shells have beex recently extensively used as
roof structures for halls in which indirect light is specified.

Y
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VIII- ARCHETD o L A B B AR D G I RDERS

In simple beams, commonly only one cross-section is subjected to
the maximum design moment, and concequently, if the member is prisma-
.tic, only one cross—section of the beam is working at the maximum all-
awable stress at design load. EKnowing that the mentioned maximum str-
esses act at the extreme fibers only and that all other fibers are un-
derstressed, one can directly obaserve that the #inpla beam is one of
the least efficient of structural forms. This situation is somewhat
improved by continuity because the maxioum field and connecting mom-
ents are commonly smaller in magnitude than of a simple beam of the
same span and the beam can be designed such that the extreme fiber
stress is equal to the allawable weslues at sections of maximum posit-
ive and neEativﬁ moments. _ i '

Arched girders of convenient form are mainly subject to high COm-—
pressive-forces and low bending moments and shearing forces so that
nearly all sections of the arch are approximatly subjected to the same
average caﬁpressivg struss'whlch means & high afflnlenag in the: use of
reinforced concrete as a building mat&rlal.

For these reasons, arched roofs give a convenient economic solut-
%nﬂ for long span roof 5tru¢tur53'ﬁithuut iﬁterqui&te supports in
cases where a plane roof surface is not necessary to meet the funct-
ional ruquf:emeﬁta of the structure; however plane ronr? or floors can
uccasibnallx be supported on Eﬁnhed Eirde:a.l

Accoraing to the conditions at the supports, ﬂrches generally
used in reinforced concrete-structures are of three main types:

a) Three hinged arches auppﬂrtgd at each end by a hinge resting od
the abutment and provided with an intermediate binge, generally plac-
ed at the crown.

b) If the intermediate hinge in the previous system is not arranged,
the arch ‘is two hlngeﬂi

e¢) If the arch is rigidly connected to the abuments in such a way
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*hat ne rotation and no vertical or hnrlzanual displacements are all-
owed, then the arch is fixed.

The best form for the axis of an arch is that which coincide=s on
the line of pressure of the loads; thus for uniform loads, perabolic
archnes Ere most convernient.

We give in the following, the theory and design of arches exten-
sively used in :tiniu-ced concrete structures..

&) Thr&g Einred g;:hua

A three hinged areh is
stat1=nlly determinate; its
norizontel thrust H can be.

‘determined from the condit-
ion that the bending momant ;
&t the intermediate hinge ¢ . d=]
is egual to zers. {?ig?III-l} -

Assuning that I' is
the bending moment nt the position of the intermediazte hinge ¢ of the

‘erch ab assuned s & simple beam, then the horizontel thrust H can be
celculated from the equation: -

Em anf

The bending nnqnnt M, shearing force Q lnd thru:t H in any sec-
tion x,y are given by:

E=H, 'ﬂﬂw'

Q= qu cosy - H. sing

F = H cosg + qﬁ siog
in which, g '
K, and Qﬂ are the btnﬁins moment and nhl:rins force of ab assumed as’
& simple beaz and
¥ = angle between the tangent to the section under consideration and
the horizontal,
in flat arches one can approximately assume :

K = H secy
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-Parabolic Arches

As stated before, parabelic erches .give the most convenient form
for uniform loads. '

The equation of the axis of the arch according to figure VIII-2
is given by:

= 1

L I
LI T T T T I TR AT L T

F= -&EE {1l = x)
1

Pig. VIII-2

Due to a uniferm load g over the whole span and a live load p act-
ing on Xy =21 /5 or |l /2 (fig VIII-2) the approximate value of the thr-
ust at the querter points is given by:

'.";I a H%l.:-l- { %E- }E.

The vertical reactions Al and A, the horizomtal thrust H and the

bending moments M at the gquarter points are given in the following
table:

Farabolic Arch

D.L. g acting over L.L. p scting on

the whole span | X = 21/5 %y = l /2

-

Vert, reactions Ay=gl/2 |Bp| / 25 p1 / 8

Ay=g1/2 |2p1 /25 | pL /8B

Horiz.thrust E=g1/81| p|Z / 258 | p 2/16f

B.M.at guarter pts M =0 |+ 5pLEk153 * plEfE4

Flat arches subject to uniform loads may be constructed with a
firculer axis in which case we get the following internal forces:.

~Due te a uniform load g over the whole span and .a live load p

.



acting on half the span ( Xy = 1/2) , the reactons are:.
A = (&/2 + 3p/B) L i Ay = (8/2 + p/B)
B = (g + p/2)1° /Bf

The bending moments M and the approximate normal force N at the quar-
ter peints of the arch are given in the following table:

Circular Arch

Ratio Dead Load Live Load On ¥ span Approx. N
£/ - Mg - Mp + Mp at X points
0.10 ©.0009 0.0161 0.0152 1.0198
0.15 0.0019 0.0166 . 0.0146 1.0440
0.20 0.0038 | 0.0175 0.0136 1.0771
0.25 0.0061 |.0,0184 0.012¢ | '1.1180
0.30 0.0088 0.0196 0.0108 1.1662
0.35 0.0122 0.0210 0.00B8 1.2207
0.40 0.0162 0.0225 0.0063 1.2806
0.45 0.0189 | o0.0241 0.0034 1.3454
0,50 0.0259 0.0259 ~ 0.0000 1.4142
g2 pi? = H

Example Of An Arched Roof Slab Hith Ties

A hallX 13155 wide is tﬁ he covered by a reinforced &nncreta cir-.
‘cular slab with a tie as shown in figure VIII-3. At crown, the rise
of the arch is 3.0 ms and its thickness t is 10 cms; at guarter points
t = 12.5 cms and.at foot t = 1% cme. The distaﬁca_batw&en the ties is

5 ms and the developed leﬁatﬁ.nf the arch is qhnut_i? ms.

- 153 -



Because of the relatively big normal compressive force and small
pending moments, such arched slabs are generally symmetrically reinf-
préed Mith a minipum percentege of 0.B% of the average concrete sec-

s § *

tien.

Fig. VIII-3

With the help of this choice and due to the slenderness of the
conerete sectipn, it is generally allowed to calculate such alab arch-
ed roofs as three hinged.

In order to simplify the calculations, the dead weight of the
slab may be asaumed as uniformly distributed. The live load is equi-
valent to 50 kgfm horizontal and the wind load is assumed eguivalent
to another 50 ksﬂmg horizontal acting on half the span. !

Accordingly, the main steps of the statical calculation can be
done in the following manner:

1) Loads
Own weight of slab ‘assumed unifTormly distributed =
0.125 x 2500 x -i2- = 330 kg/m° horiz.
18 '
Roof cover - 70 m "
Total dead load g = 40O " h
Wind + live load p.= 100 ® "

2) Maximum bending and axiel force in eireular srched slab

'iﬁnu:ﬂing to table given on page " 152 ™, we get
For £ /1 . = 3/18 = 0,166
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2
nax™ Mg e (0.0025 g + C.C169 p J‘[

- (0.0025 x 400 + 0.0169 x 100) x 187 = - 870 Kep

=]

L]

o
K

=

It [}

K =]1.055 H

- 1.055 (g + p/2)1 / &r

= 1.055 (400 + 50) 18° / 8x3 | = 6400 kgs

3) Check of stresses
Thickness of arched slab at quarter points t = 12,5 cms
Assume section symmetrically reinforced endpe=p' = 0.4%
ie A= Al :%-u-g X 12.5 x 100 = 5 cu®  chosen 7¢ 10 mu/m

M = 870 kem i . N = 6400 kgs
Eccentricity e = M/N = 870/6400 = 0.135 ms

Ecaenﬁricit;r to tension steel e, =2 4+ £/2 -2 « 13,5« 12.5/2-2

e /d =i?.'?5£10.5 . 1,69

Moment about tension steel HB = H-EE = 6400 x 0.1775 = 1140 kgm

Max. compressive stress in concrete

T, = C; M /ba® ' = 5.1 x 1140 x 100/100x122= 40 kg/cm?
Max. tensile stress in stee]
I = C M/ba® - 140 x 1140 x 100/100x12% 1100

The lopgitudinal reinforcement A' g Dust be minimum 20% of main steel
.i-t ¥ [ .
min. .ﬂ.'s = D.E-ns = 0.2x5 =1.00 nln'E,-'f'm chosen S¢6 mm/m

4) The tie
Max. horizontal thrust Ena:.: = (g + p)lE'z’Ei‘

.= 500 x 185/ 8 x 3 = 6750 kg/u
Max. tension in tie T ax = 5 x 6750 = 33750 kgs
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Using high grade steel with a max. allowable stress U, = 2000 kgfnmz,

‘then the required area of steel is
A_ = /0, = 33750/2000 = 16.875 en®

chosen &9 19 onm

S) Vertical and horizontal beams : Span = 5.0 ms

The maximum verticel reaction A of the arch will be resisted by
a vertical beam, thus

| (g + p) | /2 = 500 x 18/2 = 4500 kg/m' | and

the meximum borizontel thrust H = €750 kg/m' will be resisted by

s horizeontal beam. (Fig VIII=4).

Assuming that the Amarx

Vertical beam is 40x60 cms & Horfz, Saum

the aniﬁ. woon 20xB0 cmsa Ei;

The load on the vertical . .,
beam is: _ Fig, VITI-4

we= 450 + ( 0.% x 0.3 + 0.2 x 0,4 ) 2500 = 5000 kg/m"
_Its max. bending moment =1 2000 kgm and
its max. tension steel ; - 64 19 mm

The load on the horizontal beam is - S = 6750 kg/m'

its max. bending moment E16000 kgm and
its max. tension ateel 6d 19 mm

Tt is recommended in such beams to resist the diagonal tensile
stresses by stirrups and to use straight bars for the longitudinal
reinforcement of the beams,

E}. Details of reinforcements as shown in fig. VIII-5

23 H;gg pressure and crane .lr.:radsi

" For resisting the wind pressure {and eventual crane loads) the
syatem 'na:r'bu assumed as composed of two stiff columns fixed at their
bottom end mnd connected together by a rigid tie i.e. & simple once
statically indeterminate system. (Fig VIII-6). The main system can
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be obtained by cutting the tie , in

which, case, the statically indeter- W X i fie

nipate walue is X and
. . - y,

X = -‘fuu My ds;]ul ds . | I

. i ; : - v

in which Hﬂ. Hl and 45 are the no-— [

tations normally used in the theory !

of virtual work. Fig. VIII-6

We give in the following some other examples showing the use of 3-
hinged arches or arched frames in covering relatively big spans.

Fig. VIII-7 shows a project for prefabricated 3-hinged arched roof
prepared to cover the ammonium nitrate limestone silo of E1 Nasr Fer-
tilizer and Chemical 1nﬂustriea at Suez. The span of the arch is 26.5
me, its rise is 10,375 ms, tha distance between the center lines is
2.2 ms, the roof cover is composed of precast reinforced concrete slabs
(Fig. VIII-7a). In addition to the dead and-live 1naﬂa acting on the
arch after construction, each half must be checked as a beam for the
internal forces due to its own weight under transportation and lifting
conditions before and during construction Fig. VIII-7b. The sectioms
of the arch shown in this figure are chosen such that they give max-
jimum resistance and minimum weight.

Fig. VIII-B shows the 5-hinged superphosphate hangar at Eafr El-
Zayat, its span is 26 ms and its rise is 13 ms. This big rise is chos-.
en in order to have minimum air volume between the roof and the stored
syperphosphate because of the bad undesired effect of the air humidity
on the fertilizer. The side cantilevering structure is used as a shed
covering the raiway lines serving the hangar In order to reduce the
loads on tha arces, the roof cover is made of corrugated sheete welgh-
ing 20 kgfn only.

Fig. VIII-9 shows ‘the details of the main frames supporting the
roof slab of the urea silo at Abu~Eir Fertilizers and Chemical Indust-
ries plant. This silo is~ 50 ms spag, 186 ms long and 20 ms higk. The
max, height of the stored urea is 14.3 ms. The gsoll at the site is ex-
tremely weak and for this reasom, the floor glab carrying the urea and
the roof sbructure are supported on cast in-situ,~ 25 ms long piles.

A three hinged structure'with ties is found to be the wost convenlent
£or this case. The roof is chosen circular with inverted main frames @
ﬁ'np- The one-way roof slab is chosen at the bottom surface of the main
frames to enable the use of mechanically moving forms and to have the
frames acting as T. In this case, isolation of roof is essential,
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b) Two Hinged Arches

4 two hinged arch is
cnce statically indeter-—
minate. Choosing the sim-
ple girder with a hinge
at & and a roller at b as
main system, them the
eguation of elasticity
is : (Fig YIII-10).

b = O Fﬁ.n.rl' Hﬁl

_nu:tﬂ-

Hl-l-'.'n-——

; 1]

Diae to B = 1 , we have:

.E'..ll-".]-.ij

thli':':l!w

Q ==-1.sing

According $6 theory of virtusl work, we have:

e __an y ds y IEE cosy 48 __IQ“ sin ¢ ds
i . ] i F e -

- EI " Bh AT
and
o T J.IE as JEF_BE'F as_ J:smzwu -
ol 4 BT B GA

Irn these eguations, we have:

1) The elastic deformation due to shear siresses is Eenarh:lly small

compared to that due to normal stresses so that an sin¥ds_  pay
' i G..‘l.t

be neglected without making en appréciable error.
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2) The normal force K in any section of a two hinged arch subject

to vertical loads only can be calculated from the relation:

But

Therefore

or

Ex cosP= E i.e , Hx = H / coasy

H‘I uI‘]ﬂ-i-HE-ﬂS\.FI

B/cosy = R, + B cosy

B = Hn cosy + H casew

For flat arches cusEm =1 and accordingly N_ cosymO

3) It is ¥nown that € = ———eeee in which

v = Poissona ratio=0.2 for reinforced concrete

Sc that

Y cmoien
6

G~ 0,48 , and

for rectangular sections ; hence

GAar M_EL EA

-
43 As C-DEE*P T SiﬂE‘F , we get
"o . i .
cos_Wds JEM_E‘E_ = |e1 - sin®ey -H8. Jg, sin_Wds_

~ E4 GA' . Ea E&

[ dg aineip ds i ds

= —— + 2 R -
J  EA EA ¢/ Eh

The second

term has been neglected becase in rlat arches ¢ is small and.

sipam is a very small value.

Accordingly, im normal cases, it is sufficiently accurate to assume

that:

¥ a
g oo | DeEEE ,
= Y EI
5 _ [ .as + |-gs_
1 ET EL
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and J’M y ds

ye dse ds
————— -
|_I ﬁ

Due to an increasel| of the span , we get

F
td

Elal
[==
: +
I

and due to a temperature increase of t , we get

B, = Easl
'_?E ds J'ds
N m——— ——
I A
trical Parabolic Two Hi ches

The axis of a sym-
metrical parabolic arch
is given by the eguation:

&g o
F'—E—-:I'.-(l_ :E}

l

If the moment of inertis
I and the area A of any
section are chosen such
that

. |
£
5

Icosy= I, - and A cosw = A

where Iu and ‘F‘u are the moment of inertia and the area of fhu CroBS-
section at the crown, the integrals in the equations of H can be math-
ematically evaluated as follow : (Fig VIII-1l1).

Frnr 8 concentrated 1uhd P acting at a distance "a" from the left sup-
port, we get:
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| M_.y.ds M .y.cos ¢ .ds 1
J o . J' oY o J-Hﬂ.}r.ﬂ::
I . I.coBw 1

o

1 P 1 - a)

.x.-s-gn.x.(l—x}

1
+ o _E_:!(h_x}_.-f’i-.x{l-x}.dx
k. | L 2 ;

1 " ld

.....-.---.P.n(l—a)(l +1a—aa}
I, 32
Further
L ' ' 1
Iziﬂg - [2oscomv.ds | 1 (2882 2 (L2, ax . 8L
I I coay | I, | 15 1,
and
L L :
J’_EE_.JEE.EE;-:‘L - T R "
A A cosV¥y An "‘n
] ]

So that, for a series of concentrated loads P , we get:

5%5'.3 (!l - &) {12+tl—na}

H
g 3 15 I
«l | A R ———-E—
in whigh
15 I ’

AR = E is a correction factor due to the elastic deformation of

E i
BaA T .

[ ]

the normal force; for a rectangular section of breadth b and depth ¢
we have:

I, = bt?/12 v A = bt and E= 0.155 t°/1°
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=i |

Therafore

L _
5%:P+a Clw8) B 1% = %)

H =

8f 2 (1 +¢£)

This equation can be used for determining the ordinates of the influ-
ence line of H if P is assumed egqual to 1 and acts at a series of dis-

tences a.

For an increase Al -of spanl| , we have:

- 15 E.Iﬂ.ﬁl . 1% E.I . Al

-9 =

8£2, 1 (145 ) 8re|

Eﬂl

i, .
whereas for a temperature increase of tﬂ, we get:

15 E.I .a . ©
Et’ = 2 s .
B2 (1 +€ ) Y oar

15 E.I .a %
>

For a uniform load g acting over the whole span, we get:

: 2
- R e Iy
8f (1 +€)
Assuming --%-- = k , - then
1 +E
. 2
- H. =k Bl
& 8 f

-

For different values of: t/f, the megnitude of € and k are accordingly
‘ag follows: o

0.2 .|o0.c082 | 0.9%4
0.3 0.014 | 0.986

c.s |o.025 | 0.976
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Fig VIIi-12 shows the general layout of & two hinged arch 55 ms
span and 28.7 ms high used as the main supporting element of &n airo-

plane Hengar.

Fig, VIII-12

Fig VIII-13 shows the general layout, concrete dimensions and
details of reinforcements of & two hinged arch used as the main sup-
porting element for one of the halls in the Copper Factory at Alexan-
dria. It bas te be noticed here that the slabs are so arranged that
the hall has sufficient light, and that the cantilever arms Support-
ing the crane girders are smoothly connected to the arch in such & way
that the bending mnments transmitted to the arch are easily resisted.
The reinforcements are arranged with staggered splices and such that
not more than 20% of the reinforcement bars are spliced in any section,

¢-Twn Hinged hrnh with a Tie

This system is exter-
nally staticelly determinate
and internally once static- i
ally indeter=inate. The . |
Oain systez is chosen by cut-
ting the tie. The equatiom Fig, VITI-14
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of elmsticity is given by: Fig VIII-1&.

ﬁ = = —]il— = o + Eﬁl
htEt
E'i:::l
B il

Proceeding in the same way as in the previous case we geat:

j M,y ds
EI

For a symmetrical parabolic sarch with I cosy= In and A cosW¥ = A
subject to & series of concentrated loads F, we get: =3

|_ _ ;
i EEP-ail-—a} {IE+lB-aE}
o

Bf17 (1L +E) =+ b,

For & uniform load g , we get:
2
Ha=a E! et

I
Bf (1 +€ + lgh_nﬁ.;
iy By

Assuming that the section of the arch is rectangular with breadth b

and depth-% then ¢ _ EE% and as E. .2 then
¥
- 12 Ey 10
15 Ic‘ 2 = btj - EI
2 =
= Ay E, BOL™ A



€' is a factor expressing the effect of the elongation of the tie .
Therefore

LE
H= E
Bf (1L + E + £')

: |

Assuzing 2wkt y We can write
1 +E+g
2
X
H=k' &
8 1

For an arch with b = 30 cams, t = 80 cas, £ = 3.00 ms and 12 ¢ 25 mm ir
the tie (A, = 60 cx°) we get:

8 911?3—3-2 . _0:155.% 80°  _ o o3

300°
' e 30 x 80° )
E = = ’ = 0.0356
80£< A, 80 x 300°x 60
" J O S 1 = 0.956
1l + E +E 1.0466
2
So that E = 0.956 g-f .

This means that the horizontal thrust of a two-hinged arch with a tie
is gemerally & %o 5 % smaller than that of the corresponding three-
hinged arch. The bending moment at the crown is therefore:

: 2
B = 0,04 to 0,05 EL—
' 8

The parabolic arch shown in figure IV-3 gives a typical example
for this system. The polygonal frame shown in the same figure gives
another exaaple in which the corners of +the polygon coincide om the
line of pressure of the loads. The slabs are arranged in the middle
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third st the level of the arch and at the outside thirds at the level
of the tie. Such ap arrangement is well adapted to halls containing
smoke or fumes. The cross ventilation between the upper windows do
not allow the fumes to accumulate inside the hall.

Figures VII-21 and VII-22 give the general layout and details of
reinforcements of the main workshops of "El Nasr Forging Flant" at Hel-
wan in which arched girders with ties were used as the main supporting
element for the saw-tooth roef.

Figure VIII-15 gives the general layout of the "Covered Gymnasium"
at the Faculty of Police, El Nasr City Cairo. The roof is flat at the
middle part of the hall and is composed of curved inwverted shells on
the two sides, sll are bung to the arched girders as shown. The. tie
between the footings of the main arches is post-tensicned by two Frey-
ssinet cables 12 ¢ 7 mm each.

d) Two Hinged Arch with Polygonal Tie
fwo binged arches with
parabolic ties as shown in
figure VIII-16 may be used
in roof structures as well
as in bridges.

-

The statically indeter-—
minate wvelue ig the horiz.

component H of the forces Farces £ I':-!;M —
in the tie. srim ——

: Forces f o lie & --"""-'H

The horizontel thrust P
" I.-H;l’ﬂ -IJI' ﬁ ,r'lrlr.f | #.f

H due to A series of concen- ] i ]
trated loads P is given by: et

z FQ-F.'. .E J’ Hﬂ-r' ﬂa E.,%E:-—_.]'.-.E .

- i == ————

EI

h Tn Ay

2

il

B Ay BB A,

in Hhiﬂh

E-:'E-unﬂ- +E E—ﬁ o

- :
C.ds J._E_
EX

2. 2= = sum of forces in hangers and tie respectively

h®

Ih 3 E% = modulus of elasticity of hangers-and tie respectively,

generally = E'
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- At = effective area of cross-section of hangers and tie respect-
' ively, generally equal to the area of steel in the nember

1
F, = forces in hangers due to loading P and are egual to P if ‘the'
loads act at the level of the tie and are egqual to zero if
the leoadz act on the arch
F' ‘= forces in tie and hangers due to H = 1 and can be determined
' from the force polygon shown in figure VIIi-16.
f+1 =

length of any of the hangers or elements of the tie
e) Fixed Arches

A fixed arch is three
times staticelly indeter-
minate. It can be treated
in the same way as fixed
franes. Choosing the simple
centilever as main system
and applying the statically
indeterninate velues, H , ¥V
and M in the elastic center

0, we get:(Fig VIII-17). Pig, VIII-17
[Ygx e e [ S
: I
H oae . I P I_____ T
~ IL_EE " I_EE I___e;-, j.ﬂ_s-
I ‘A ' I I

The bending moment in any section can be determined by superpo-
geition; fthus

H.- Hu + Hy + Vx+H

Tue to a cbange of temperture of t“,
we get-only the resction:

Eactl

Ht = 5
_[L,ga + [-ds

I

A

This force acts st the level of the
X — exis 25 shown in figure VIII-18.

.

o YEE



Pixed arches ¢r frames are to be used only if they are constru-
cted,op.firm soils and the foundations are chosen such that they do
pujﬂﬁilhu gnT displacemnent or rotation of the supports. Buch displa-—
cefents as well as temperature changes and shrinkage cause relatively
bigh internal stresses and hence must be considered in the design. It
iz recommended to take all possible means %o reduce the shrinkege str-
esses. For this pui-pn:_:a, a k&;qr'c.a 30 cms wide is concreted only when
most of the shrinkage of the arch has taken place (say after 3 weeks).

f) Continuous Arches
I._.ﬂ‘_

=

[
Ih

Tt

fIHI

A symmetrical continuocus arch with a tie symmetricelly loaded as
shown 4infigure VIII-19 is twice statically indeterninate. The mazin
nj’ﬁj‘aﬂ.m be chosen by removing the intermediate support and cutting
the T1i€8. The stﬂticallly indeterminate ifali.u:a are L and I,. The equ-—

ations of elasticity are:

'Ji‘

“"“II

.x::_f S

..ﬂ!lﬂl”“[ "

) I,-I
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1) By = @ = By e Ty By, + X305

= A |
I

Neglecting the elastic deformations dua to the normal anﬁ shear-
ing forces, we get: '

| ! L

ds . 48 X oy s L as

L1 i o ]

F "I_ ' L - p

2) Eb, -Jl]-lf A8 L2l ¢- xy2 ds . 1 JIE ds
1 2 2

I I
o

1 1 L
ol - J{# X 3-9).25 - [ﬂ' g
- 2 t o

. Q

n
M
=
=
=
LA+

s ds ds ds
=]

5) Ebny = | Mg EI{-FJE ds _ EJ .ﬂ-_;i
' o

1
o

For a continuous parabolic arch with I cos¥ = I_ and subject to
uniform load p/m', we get:

j--ﬂ--—-—EE— {E#:}
.t

and
M oe pE (2l - x)
. o 2
So that :
1 |
£B --ﬁxEEE‘J‘ﬁxEE_“EE."?:-.L ——
10 QI“ {I: od. 7 I cose T, -
e
— P_EE (21 - x4 = - <2l.
Il 2 | 241
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: , . . 3
$yq =k [ 88 0 D[P zcest fﬁﬂ-_t_-_
1 2 I P I cosv 2L F &1

o o o p (=]
L
b |
¢ I HEe I casW¥ Iﬂ .
2 2
- I E’-{l—:ﬁ}ﬂ_‘l{ --'I-E-l——
In & Eln_
L
At I cosvy Iun
- B |pX (2l = x) . 2f X5 (1 - x) ax
In- 2 1
o
; 3
--I-'-'EE [21232-3113'+1}d1--?££]—-
Iul 15 I
o
| 1
2 z
EB = 2 :YE E—E = 2 -[’IE QE.—EEE-E.-. - —— I}' dx
ee i I o I cosVy Iclu

Substituti these values in the eguations of elasticity we get:
Futing

4 3 2
1) o =-22_ ,x.-L0ax,. fl-
24 I¢ EI o
2x_ | E 3 2
2) T - - I L x Cl s x,. 16£1
A By 15T, 13 15 1,
These two egquations give:
2 SE I
ar {1 o+ —'-'E—-'-H-']
heEy
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S5E .1 1

Assuming -E——g-— =y and —— = K s then
: 1l + U
- B -
: 2 2
X, = ElL -k Bl and

8L(1 +u) " af1-

4 1+ K

xllpl u+ﬂ-{é—-§-£]pl

Example: _

Parsbolic arch, continusus over two spans 24 ms each, rise. 3.0 m
eross-section of arch st crown 30 x 80 cms, reinforcement of tie .
12 # 25 om (A, = €0 ca®) , E = 210 t/em", By = 2100 t/cm® apd load
p=5t/m. ;

mn o208, -f”"'*""":’:""5‘“":'3 e S W T
f""':q.t E, 12x 200 x 60 10
1 +K | 1.2
N 12 . x 242 :
x, =k EBL - 0.9 2=%2% . 0.9 x 120 = 108 ton
g r B x 3

x, = -EE-:-"-‘] Pl = ii-:fﬁ') 5 x 24 = 1.025 x 120 = 123 ton

Reaction at outside supports:
B _-B--%—'{fix#-ﬁ-lE}}-'l%E-ﬁﬁ.Etan

Faxioum bending moment K at crown:

2 : 2
Hm-.t._.‘m-El-_xer:EE;i’IE“-f’-IE“-10515-1E-mt
2 B 2 8

Haximum bending moment HE at intermediate support:

M, = Aol - Pl . sa.5x 24 - 2 x 24 L _ 3 at
2 : , e

Y



For preliminary celeculations, ohe may assume here also fthat the
maximum bending moment g at the crown and the maximum tending moment
HE gt the suppeort are given by:

2
¥ e 0.05 Bl
" 8

2
M_=- 0.10 Bl_
' g

Applying these two equatioms on our exampleé , we find that:

2
M, = 0.05 x 2.X. 2% . 18 mt
8

2 . and
M ==D.10 x 2-2-2%_ ._35 mt
& 8
Tables of Tnternzl Forces in Two Hinged and Fixed Parabolic Arches:
with I cosy = I :
: 1’1 | x T |
The axis of a parabolie-arch | '_ . :
fig, VIII-20 is given by: _ i/ﬁf-\l f'
- bfx : :
c o oe—— oy L1 =x or
¥ : > ( ) : . I.. £ i ~
' 5% ! . x! ;
¥ = 4fEE where E= i apd E= i Fig. VIII-20

The length of the axis s for parabolic arches is approximately given
by -
s -I(1+-§—1E} wherru'q--—j;-

The following ‘I‘.m‘::uzl.uza'j'E Eive the reactions and maximum moments in
 two hinged and fixed arches, they help much in the preliminary design.

* = Tiegign of Comerete Structures” by Winter,Urquhart,0'Rourke and
Hilson, Fublished by McGraw-Hill Book Company. Hew York.
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MOMENTS AND REACTIONS OF TWO HINGED PAPAROLIC ARHES

’ 3 r
. / A.8. 5L H=d
m i‘!._! i Hﬁ- _—
ta W
e —e=T"] e e JL = 127
| . I? A8 ;‘ﬁr H .;_5‘”
’ ' *f’
T Y| - K akr
ad ad
=T - y
—f o= As Bz pal He ﬁg{ Jlra-sa¢5)
—r/_\_ = "‘}f"f." 2a’-5a's1)
el Py
=='§==|-_-| A f;%ﬂ (r-#a) Hlﬁ-’ﬁfﬂr--fn‘ﬂﬂr-ﬂj
w/—\‘ He AL (e -5a00)
|l—{l g ? & T
s A p2l (s-a) £zt Wl (s 5e"s )
Jor .}' £ald ;:.' : Hfrr ;gf?f::.:-grnvfn:'wquj
| ad | G
I:::m:::m A= _ﬁ;__? " j"%rfr“'-j Jﬁrrvi-f; l-’(!'-l-J-Iﬂ-rf-i.‘-J
m Jor _;’ Lal £ %-If, ﬁ?;ﬁ{r::'(::;r-ﬂflrf?}'
l'i'ﬂ r
Ae Plr-a) B- FPa H#ﬁ-{ uﬁ:."-.rd +2)
M= %‘.‘J -satrioa®p)
Uniform lomp. | Geffof divcar wspension « | A= EEI=E
r.‘_.rfa.n Jt}'i" =g FTmt I - £
d LA % Tt
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MOMENTS AND PLACTIONS OF Ff7XED PARAROLIC ARCHES
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Fositions of loads and values of"a’ which result with

good acnuricy in

maximuz moments at the crown, gquarter point, or springing are givan
fox bath types of arches in the following table.
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I¥ = CONSTRUCTIONAL DETAILE,

I¥-1 INSULATION AND ISOLATION OF ROOFS

In big span roof structures supporting mainly their own weight,
it is recommended tq choogse the shape of the main supporting element
giving the minimum dimensions. The spacing between the main girders
and the secondary longitudinal beams should be so chosen as to give a
thickness of slab varying between £ and 10 ema. Buch thin slabs are
generally not water-tight and must be given a sufficient slope(=1/100)
80 that rain water can be directly drained and is mot allowed to ga-
ther on the roof. An effective isclating material such as pluvex oT
asphalteid in 2 or more layers may be used.

Insulation of these thin slabs by the use of 5-8 cms. celton,
airocrete, thermocrete, no fine light concrete... etc. is also essen-
tial. Cement tlles may also be uséd as & covering material for hori-
zontal and lightly inclined roofa. The dstails are shown in fig. IZ-1
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IX=-2). EEEQEQLRI BEAMS

Secondary beams are generally arranged nnrmal to the main Sup-
porting frames or arches giving together a stable spaca structure and
dividing the slab in convenient areas giving economic dimensions. The
Spacing lies generally between 2.5 and 5.0 ms, while the span varies
between 4 and 8 ms. These are determined by economical and practical
considerations. They will be affected by the use to which the-struc-
ture is to be put, the size and shape of the structure and the load
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which must be carried. A comparison of a number of trial dasigﬁs and
estimates should be made and the most satisfactory arrangement selec-
ted.
If the slope of the roof is smaller than 1 : 3 -ﬂ‘g_‘ﬂl..tha
secondary beams are made wvertical, for bigger slopes, the beams are
made normal to the slab. The arrangement of intermediate, edge, wall
and crane beams can hﬁ chosen according to figure IX-2

Fi& IX-¢

Pig., IE-2

The slabs in the structure shown project ~ 0.5 ms. outside the
windows so that the rain water does not seep on them. The rain water
js either left to fall freely from the roof of the monitor to the roof
of the hall and then to the free area outside the structure or it is
collected in a gutter as shown in by ; by Or by . The beam at a is
inverted in order to allow for a good fixation of the window crytal
frame and to prevent seeping of the rain water at the lower edge of
the window. It gives more stiffness if the wall beam and the cTrane
girder ( if any ) are arranged in the same horizontal plane and con -
nected wity a slab which may be used as & foot—path at the windows and
helps in resisting the horizontal component of the crane load.
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IX-3) .SHORT CANTILEVERS ( Fig. IX-3 )

Fr é“d” d{;ﬂwr:f

Z
A b . W
..14:: P‘pﬂ/-";ﬂ‘fé h‘ :‘;
..n{;r A S
<> ¥ X
Fig. IX-5

Crane girders are generally -supported by short cantilevers as
shown in figure IX-3, If the projection a is smaller than d4' (=0.8 d)
or egqual to it so that o > 45°, the tension T can be determined Dby
direct resolution of forces for the same reasoning given ix { X-5 ).

Hence
T/P = a/d" but T = 'E'E L and d'" = 0.8 &

then A, = P e/0.B a o

Horizental stirrups having an area 4! = A /4 %o resist the
possible temsile forces normal to the direction of the compression O©

are essentisl.
IX-4) EXPARSION JOINTS
Long structures are to be d.ividaﬂ. into blocks of maximum length

or breadth equal to 40 ms. by expansion Jjoints according to one of
the systems shown in figure ITE-&

IX-5) END GABLES
In order to resist the wind pressure agting on the end cross -
walls of big span halls one has to arTange a gieres of columns, gene—
rally framing with the longitudinal beams of the roof at distances of
- 465 ms. To reduce the bending moments on such columns  horizontal beams
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at convenient distances — 4.0 to 6.0 ms.

are essential. As an example
Tefer to seectitn C-C of fig., IV-34
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~HINGED AND FREE BEARINGS

A free bearing is arranged to give a reaction at the point of
suppert in a specified direction without any restraint. It must there-
fore be free to rotate and slide normal to the specified direction of
the reaction so that the reaction at a free 'I:e.&.ri.u.é includes one un—
known only. ' '

A hinged bearing is free tc rotate without any restraint so
that the point of application of the reaction is known but its direc-

tion and magnitude are unknown l.e. & reaction at & hinged suppur‘l:
includes two unh:nnm as shown in figure I-1

: Arlgiggff
|
a A A
. -

saleny [ : -
,ﬂ’ -;rﬁ‘.’ane iy free ff; i ;MN
N CaeMe / : ..-'"""'Fl: .H"
N v Mag Ny l.' fﬂ,"’ H’___,.--"’
i é‘a = . Fa .-".""
| ,..'::-""f
.|l5' _ .
Fig. ¥-1

Such ideal free and h:l.ngud. bearings cannct be constructed ,
since friction or other inevitable restraining factors cennot be avo-
ided.

A. HINGED BEARINGS .

The main practical types of hinges used in concrete strictu—
res are 3

X-1) STEEL HINGES
The steel hinges e.g. as shown in figure I-2 result in more
perfect hinge-action than the concrete hinges, but are considerably

more expensive. Their use today, is restricted to bridges a.nd. unsual-
ly heavy concrete Etruct'uz-es.
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1?2} MESNAGER HINGES

In this type of hinge, the reaction B is transmitted through
the crossing bars 4 sl and ‘E'BE « Their imclimation with the free
face of hinge lies betwaen 30° and 60° . They are protected from
rusting by 2.5 cms. oxidized asphalt, bituminous cork or bituminous
felt arranged -as shown in figure X-3 .

The crossing bars are in this mannar Eﬁhj&:t to  compressive
stregzses O 3 which must not exceed 0.3 a v " This low stress is assu-

med because u.n:r rotation actually occuring at the hinge bends the bars
and induces corresponding flexural stresses. Such rotations actually do

take place during the lifetime of the structure and are caused pr.tmu.—
rily by changes in live load and temperature. These flexural stresses
superposs on the computed numprussiun and correspondingly increase the
value of the actual maximum Stresses in the bars. Rather than to atte-
mpt computing these additional stresses, it- is generally satisfactory
to keep the compression stress L'.r‘ ' gufficisntly low so that the bars
will not be overstressed by nupurpnﬂud. bending.

The crossing bars, trmﬂﬂin; their force to the cn.nnrutu
by beond ulu:r.s the embedded length, 'exert a bursting force whinh_nuzt
be resisted by additional tiea. Only the part of the lateral reinfor-
cement within a distance = 8% (<% being the diameter of crossing
bars) from the face of the uunr::-sta is considered effective in resis-
ting the bursting force. The tensile stress ﬂ' in the ties A_, can
be computed according to figs. I-3 & X4 from thﬁ_ relation.

(N/2) tan @ + Ha / Joq
0.005 ab + &_4

Eﬂta
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DETALS OF -
A MESNAGER HINGE ] - -
Fig, X-3 '
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where, in addition to previously

defined quantities, 4_, 1is the
combined area of lateral ties lo-
cated within a = B¢ from the Ifree

face of the hinge and Jop = 0.87 a

Example :
A Mespager hinge of the form :
Fig, X4

shown in figure X-3 is subject to
an inclined reacticn R whose component normal to the free face of the

hinge N = 25t and its component parallel to it H = 5t. The breadth

b and depth * of the foot of the column are : b = 40 cms, and t =
Determine the reinforcements required for the hinge using

&0 cms.

mild steel with Uj, = 2700 i:sfnmz .

feferring to figure IX-3, assume :

R, =14 ton mo that Ay =R /0L = 14/0.8 = 18 em® 4 25
- 17.6/0.8 = 22 cm®> 428

R, = J.-?:E ton 8o that L., =Ry /og =
transmit the forces

The stress in the lateral ties required to
= B ¢ = EIE.E L et

in these crossing bars by bond along & length a
ecalculated in the following manner 3
then we will hawve

Assuming the ties are 8¢ 6 spacedat ~ 7.5 chS.,
four rows of ties with 4 x 6 = %2 branch and having & total area

Aoy . z2 x 0.24 = 2 .68 t.*.m:E and tan & = 0.8
We have further d = 55 cms

to the concrete 1is

p.87 d = 48 cms.

and Fop =

So that 1:
< 1400 Safel

g o= 3B £ 0.8 + 5000 x 22.4/%8 _ 1015 ‘kg/em”
o 0.005 x 22.4'x 40 + 7.68 e
This type of binges can only be used for relatively small va-
~ 30 tons ) and is 1imited by the maxrimum amount of
of the

can be placed in the treadth of the foot

lues of R {
of minimum 3 c@ms. between the couples

crossing bars that
splumn giving a clear distance
of crogseing bars as shown 1n figure I-3 .
fig. I-5

I-3) OCORSIDERE HELEGES
+he normal component B

In this type of hinge, of the reaction
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A CONITLDERE HINGE - =
— 7
& 1
-
7"*;‘ \]‘::; / g E--Jt'f-
4
=2 ?, vatervid
. = F 4
WIER R
R v Tk _"*'-'F-‘.
i 8 | T
i ¢ r

] 1
is transmitted to the foundation by +the short spirally reinforced
concrete column arranged at the middle of the foot of the main column
where as the thrust H is resisted by the crossing bars 131 and Ase

In order to have an acceptable hinge action, t' must be <t/3
The spirally reinforced short column may be calculated from the iknown

relation of the elastic theory.
N=0,4 +0! 4 + 2.5 L - Op &g+ 02 a_)

in which

L. = the area of the core inside the spirals ( hatched area )

"'-:-: o BT

A,' = area of cross—section of longitudinal reinforcements inmide the
Epirmls

Al = imaginary longitudinal reinforcements baving the same volume of
the spirals with cross-sectional area ‘ls;_:- y Pitch e { =8 cms)
and diameter D i.e. 4 = .!LEP T Dfe

'3 .
U'h = Ucﬂ T AFA? '“E"‘.“-‘-:.U-:EE ),’E. the bearing stress of partially lea -

ded areas,

ﬂ'gg = allowable écmprussive Stress of the concrete used



4 = b t' = area of foot of column

A' = ik ox ic eifective losded ares

0. = allowable compressive stress of longitudinal reinforcement

allowable tensile stress of apirals

=
@
i

o = 1% = medular . ratio

If the ultimate strength theory is applied the corresponding
eguation with the specified load and reduction factors can be used.

Due to the concentration of the stresses in the hinge heorizon
tal splitting tensile forces are created at the foot of the column ,
The stirrups along the height h = t are generally increased to re-
sist these splitting forces. =k

I-4) LEAD HINGES fig.

In this type of
binges, the normal com-—
Ponent N of the hinge
is transmitted to the
foundation by bearing
through a 2 cms thick
lead plate arranged
at the middle of the .
column feoot. The hori-
zontal component H is
resisted by the shear
resistance of the con-
necting bars A_ which
are protected from
rusting by 2ems,thick
bituminous cork, bitu-
minous felt or oxidized
asphalt arranged as l £
shown in fig. X-5, [

Fig. I-6

I-5

In order to have
acceptable hinge action, the length of the lead plate t' must be



smaller than or egual to one third of the depth of the columm at the
Position of the hinge measured in the direction of the regquired rota-
tiom.

The lrad hinge can accordingly be calculated in the following
manner :

3
N/bt' < O, = Tao I/ asar = G‘naﬂffa

35 = H;'TB whera T; = 0.8 UE = #allow. shear stress of steel,

. If it is reguired to reduce the amount of the connecting steel
4, To a2 minimum, the lead plate is to be arranged normal to the di-
rection of the reaction due to dead loads as shown in figure I-7, in
which case, A4 can be calculated to resist the thrust due to live

|
loads only.

Due to the concentra-
tion of the stresses at the
position of the hinge trans-
veras tensile eplitting for-
c&s are created; These cag
be explained as follows
( £ig. X=8 ).

: X e L i e
..'__':_ ..-‘ o i E. R LR i
The transmission of the normal compressive stresses is assu-
med to take place from the breadth of the column t +o the breadth
of the lead plate +' 4in a height h approximately egual to the

breadth +
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of thea column 2¢ thet the nnmpraasiﬂn trajectories and the corres =
ponding tenmion trajectories will be as shown in fig. X-8a ,

Considering the eguilibrium of any half of the concrete block,
beight h = %, at the hinge, we can see that the two forces N/2 ars
aqual and opposite but not colinear and eguilibrium is only posaible
if & transverse force Fap is amsumed acting as shown in figure X-8b.
Its magnitude can be determined, according to Moersch, if we take
moments of the forces acting on say the right half about point O.

Hence 1
N t A : t
= (gl B 5
S0 that
F!P =T (vt =1%'") / &t~ N4
FHP is tension and called the transverse splitting tensile force,it
agsumes ite mex. value of N/4 for ' = 0, It musat be resis -
ted by horizontal stirrups of area A = . f O, &arranged

at the foot of the column in a height h = t - Huf&r tu figures
X-5, 6&7.

X-5) CONCRETE HINGES

1 L L e

LT, |

sl EE T I:
Pige X9 | i

| VRN VIR ]

| o 1

THis type can nnir be used if the hinge is subjected to
small angles of rotation. The vertical component of the reaction
ieg transmitted to thu suppurting element by bearing on concrete with

b steens Ty ¥ A <0ios /2 - 150 4o 200 kg/om®. The
horizontal cumpunent of the remction 1s taken by the shear resistan-
ce of the wertical connecting bars

It is recommended to arrange rbinfnrcing meshes ¢ 8 mm. o
both sides’'of the hinge ms shown in figure X-9 . It is not allowed-
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to make a construction joint through the hinge and to make it .of high
grade concrete,

For this reason precast hinges ( or rockers ) as shown in figu-
re Iflﬁ' may be usad,

PRECAST HNGE PRECATT LOCE®

Fig.: 1-10
It is however essential to arrange sufficient cross-—reinforce-
ment to resist the possible splitting forces.

In gll previcus types, the minimum anchorage length of cross—
ing or longitudinal bars must be > 30 ¢ end > 50 cms, on each side
of the hinge,

B. FREE BEARTNG

The main types of free bearings used in concrete structures
ara 3

I-6) STEEL BEARTNGS

The different types of asteel bearings may be used in concrete
structures. Types of low cost and low construction height are recom-
mended. :

I-7) ROCEER BEARINGS ( Fig. X-11)

A rocker is a short teinforced concrete element between two
hinges as shown in Iiﬁura I-1l. A= the rocker is not laterally iug-
ded, +he reaction supported by a rocker will be in the direction
of the line connecting the two hinges . Its height h depends on
the required -displacement. and rotation. It supports the reaction
ﬁ%fthg combined action of the concrete , the longitudinal reinfor-
étmuntnlnnﬂ eventually the cross reinforcements which if placed in
inyera at & small spacing e <8 cms., they increase the resistance
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of the rocker by an amount equal to¢ 2.5 n Al ﬂ'$ s8imilar teo that
of spiral reinforcement ; A.é is in this case egual to the wvolume
of the cross reinforcements per unit height i.e. total -length of
croas reinforcements multiplied by their cross-section and ‘divided
by their pitch e.

i
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+des et e |
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el i

g

i
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E % i ‘ H l Flg. I-11

X-8) RUEBER BEARINGS { Fig. X-12 )

A Tubber bearing is composed of steel plates or wire meshes
embedded in A special material - the neoprene - made of artificial
synthetic rubber. It posmesses very
high resistance to clymatic changas
and chemical actions of acids or al-
kalies that are liable to exist in
air or water. The steel in these bea-
rings is completely protected againat |_,f ;
rusting. A neoprene bearing posses- =
ses the high resistance of steel and : by
the elasticity of rubber. It can Fig. X-12
resist high vertical forces without appreciable vertical displacements.
It allowas for horizontal displacements § and rotations @ in two normal

Lok
A i I:ﬂf.t:: (ﬂs )



directions as shown in figure X-13

& N Ly -
= =
Horiz. displ. § Rolatron of

Pig. X-13 _
This kind of bearings is to be assumed as free allowing ' rota-
tions and horizontal displacementa in any- direction.

The exact stress distribution in a neoprens bearings is very
complicated but for practical designs, the following method may be '
used. One has to check.

1) The axial compressive stress
) max, 0 = max. N/A < allow.O = 100 kg/fcm®

2) Sliding angle "
tan ¥ = 6 /h, < allow. tany

) ]‘Inri_znnta.l force :
H = G. A. tanYy

4) Angle of friction between neoprene bearing and concrete
max, { = max. H/min N < allow.l

5) Angle .of rotaticn of every rubber layer

B<allow, B
in which
max. N and min, N are the maximm and minimum normal componenta of
the reactiod.

A is the area of the bearing in plan

& the horizontal displacement of the point of support

e the net height of the bearing (sum of all rubber layers)
B the height of the bearing :

n number of rubber layers

G ‘h‘l_.i.l]: modulus of rubber

The following two cases of loading must be recognised :

Case I -« Permanent Loads
( dead loads, prestressing, creep, shrinkage, temperature)

- 191 -



Case II — Live loads (acting for a short time)
(tractive & wind foreces)

The following wvalues must not be exceeded.
Table 1

| case of|tan| allow.normal g in kg/em“| allow. B _in minutes|’ G'A

{loading] ¥ |20 [ 40 | 60 | 80 {100 |150x200/200x300]300x400] kg/c
1 |0.7[0.50|0.45]0.40[0.35| 0.30| 10.0 | 7.5 | 5.0 | 13
IT 0.3 [0.30(0.26]0.22(0.18| 0.15| 4.0 3.0 2.0 | 20

I + II |0.9/0.50/0.45(0.40[0.35| 0.30| 14.0 | 10.5 7.0

all values are related to the effective depth h,

The compreesibility of the neoprene bearing due to vertical for-
ces is very small and has no effect on the internal . ferces in stati-

cally indeterminate structures.
The standard dimensions are :

150 x 200 mm for max. N = 30 t with E = 3500 kg,;‘mz
200 x 300 om for max. N =60 t with E = 7000 'Ir.gfcma
300 x 400 mm for max. N =120 ¢ with E =14500 Ekg/cm

Its height is chosen according to the statical reguirements
and should be < 1/5 of its breadth. The rubber layers are Smms. thick

Table II

No.of Tubber
layers n=| 2 3 41 5 6 7| 8|9 |10}]11 |12

depth

effective rl:\w: 10 (15 (20 |25 | 30 |35 |#0 | 45 |50 |55 | 60 | mm.
52

total depth | b= 14 |21 |28 |35 49 |56 | 63|70 |77 | B4 | »
for case of | w= 7.0 |1O.5|14017521.0|24.5) 26.0( 51.5[35.0 ?B.,ﬁ 42,0l "
load I 1
for bearing max| 30 |30 |30 |30 |30 | = | = | = - = | = t
150 x 200 V= ; _ :
for bearing| " |60 |60 |60 |60 |60 |60 |60 | = | =| - | = | &
200 x 300 ; :
for beering| " = "= — - . 3
300 x 400 120 [12D0)120}120 120 | 120|120 +




‘Example :
Design the required neoprene bearings for the shown simple pres—
tressed foot bridge. ( Fig. X-14)

! .00 |
i |
PP PP F
Fig. X-14

data :
Cross-section A =2.8m° I, =0.08 m'
Initial prestressing force o =900 ¢
Span L = 20 ms
Temperature change it = + 20°
Creep Etruin%r= % times elastic strain Ec !
Shrinkage strain 0.20 mm/m €gp = 0.2 x 1077
Modulus of elasticity of concrete E, = 300 000 kg/cn®
Bulk modulus of bearing . 6« =15 kg/cm®
Dead load ' g = 7.5 t/m
Live load P = 2.5 t/m
Average concrete stress U, due to P, + E is given by

O, = P, /A = 900/2.8 = 320 t/n° = 32 kg/ca®
The horizontal displacements of the bridge are :
Due to prestress €, = O,/ = 32/300 000 = 0.1l x 107
Due to creep E;:r =3 x Eq= 330.11x10™> = 0.33 x 10~
Due to shrinkage E_, = 0.2 , Tm/m = 0.20 x 1072
Due to temperaturs Et = 20 x 1077 = 020 x 1077

tobedl £ = 0.8% % 1077

Horizontal displacement of point of support

w=lE/2 = 20000x0.84x 107/2 = 8.4, mm.
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Reactions

max. N= (g+plL/2={7.54+ 2.5) x 20/2 = 100 ¢
min. N = g | /2 = 7.5 x 20/2 = 75 %
For each side of the bridge, we choose
2 npeoprene bearings each 200 x 300 x 20 mm
Bearing area A= 2x20x30 = 1200 ond
Height of bearing h = 20 mn ( 4 rubber layers S mms. each )
Normal stress O, max N/A = 100 000/1200 = 83 kg/cm>< 100
Displacement angle tan y = rfhn = 8,4/20 = 0.42 < 0.7

Max, horizontal force Hopg O 4 tany= 13x1200x0.42 = 6500 kg = 6.5t

Q.08%7 < 0.40

Coeff. of friction H .= max B/min ¥ = 65/75

Fote = 0.40 is the allowed wvalue for Qpip = min F/4 = 75 000/1200
= B2 EE.-""Z'—IEE 3
Angle of rotation g per layer of rubber

-4 2 & f i =
1 L - vk 2.5 x 20 é"'h&

c "C
Feoprene bearings do oot generally need any sort of fixaticn
and are loosely placed on the bearing surface. They can be used both
for steel and concrete structures. It'is, however, of utmost impor-
tance that the bearing surface is smooth, clean, plane and dry.

For the construction of neoprene supports in concrete structu-
res, they are to be encased im such a way that the shuttering can be
easily removed. For supports of small height, ecork plates are <to be
used. The surface of the neoprene support must be flush with the shu-
ttering.

After the removal of the shuttering ( or cork ), the lateral
surfaces of the support must be entirely free so as to guarantee a
smooth functioning of the support ( Pig. ¥-15).

For small bridges aqﬂ‘buiidingﬂ in which the reactions are
generally small, nanpreﬁe supports without steel plates may be wused.
The max, normal stress is to be chosen smaller than 25 kgfnmz and
tany < 0.5 .

Necprene strips can be ébnvEniently used as supports for cylin-
drical tanks with sliding base where they transmit the load .of the
wall { and eventually the roof) to the floor and, allow for the
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free movement of- the wall end give a watertight joint.
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II-FOLDED PLATE STRUCTURES

II-1) DEFINITION AND TYFES

;?olgnd or hippﬁﬁpplata structures conaist of an assembly of flat
plate strips intersecting at fold lines and arranged such that they
form a stable three—dimensional structure, Fig. II-1.

Simple prismatic
folded-plate roof

Fig, XI-1

They may be prismatic, prismoidal, pyramidal, .... etc.; they find
application as roofs, coal bunkers, cooling towers, bridges, stair —
CazSa8, Et"ﬁ# EEE & FiEi I_I—E-

 Prismatic structures must be stiffened by diaphragms in at least
two cross-sections, _

The plate elements of a folded structure being straight, they are
subject to bending moments between the fold lines and hence, they con-
sume a little more material than continuously curved cylindrical shells,
but the extra cost on this' account is much smaller than the saving in

the firms.

- 197 -



Examples of prismstic folded-plates

Wide folded-plate Continuous folded-pl.

Diaphrapgm

Multiple folded Plate

>w

N

/s

Examples of non-prismatic folded-plates

@ 2aY..

Prismoidal folded-plate FPyramidal folded plate

Fig. XI-2
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Examples of non-prismatic folded-plates (continued)

Triangular folded-plate

Pig. XI-2
{continned)
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X1 -2) ASSWPRIQNS AND STRUCTURAL -BEHAVIOR

Being primarily interested in folded plates as roofs, our study
will be restricted to prysmatic folded plates consisting of rectangu-
lar plates, each plate being of uniferm thickness,

The following assumptions are usually made in the computations:

i ) The structure is monolithic- and the ;i?ints are rigid,

ii) The material is elastic, homogemeous and isotropic.

iii) The length of each plate is more than twice its width,

iv) In all plates, plane sections ~rémain plane after deformation. (It
is, however, to be carefully noted that a plane cross section of
the entire structiure does not necessarily remain plane after de—
formation). '

XZI-3) SLAB AWD BEAM ACTION

Edee longidudinal
wheor T

2
- _ Stress dis-
Plate 2 ' b tribution
due to Eg,fm
{;
'hs;.ﬂﬂ'-l"? { = (EJ

Beam mction
EE- II""E

- 200 —



A) Slab Action
In prismatic folded plates, the length of each plate s more than

twice its width (assumption iii) that the surface loads are carried by
each plate as a cne way slcb supported on the fold lines. This is term-
ed ag slab action. A typical transverse strip is shown in Fig. II=3 a.
The corresponding bending moments as a one-way contimmous slab are
shown in Fig. II-3 b,
BE) Beam Action

The reactions F/m from such slab strips are applied as line loads
to the fold lines., The only direction in which each plate can apply a
reactive force to resist this line load is parallel to its own surface.
The resultant line load P/m (see Fig. XI-3 ¢) therefore resolvés into
components parallel to the two adjacent plates. The plates in turn carry
this edge loading longitudinally between the end diaphragis 'D' by beam
action as shown in Fig. XT-3 4.

a) Ridge and plate loads

% (py by + py b)) XI-1
PE=-E~(p2h2+p5h3} XI-2

Ba wlly g =8y 5 XI-3

Loads such as P, applied at the ridge 2 are known as ridge loads .
Considering a unit length m‘.‘ the folded plate, then P = % l:pa hE + D

h e P may be resolved into plate loads EF.' 1 and EE 3 lying respect-
.'L'rel:'_r :|.11 the planes of the second and third pla:h'us by means of a trian-

gle of forces as shown in Fig, XI-%,
In the designation of plate loads such as S5 4 the first subscript
'
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stands for the joint at which the load acts and the second subseript
indicates the joint toward which the plate load is directed, Thus the
plate load S5 5 is directed from joint 2 to joint 1 at ridge 2. The

plate loads S5 may include the effect of the connecting momanta in ths
cross direction, It is clear that the net plate load carried as a beam
by e.g. the second plate is
P W W XI-3
From the triangle of forces given in Fig. XI4, it is easy to
prove that:

P, cosg P, cos @
2 s 2
EE,l = 32 ! and 52'5 = -E———EE-— XI-4

b) Frée edge stresses and nugpgfihiligg at the ridges

The distribution of the normal stresses in any section of a Zfree

plate subject to a bending moment M_ is given by:
ot = +M_ /2

where I is the section modulus of a Plate;, 2 = b hE..r’ & for rectangu-
lar sections of breadth b and height h as shown for plate 2 in Pig.
Il=5 d and =

Tt conditions are such that the free edge stresses are the same
om both side=z of all fold lines, then they are identical with the
final stresres, This would.be the case, for example, at the edges of
an interior unit of & roof consisting of many identical units (e.g.
internediate joints of the Vee folded plate of Fig. XI-2). If, on the
other hand, the imitial plate analysis indicates a stress difference
on either side of a fold line, an incompatibility is indicated which
cannot actmally exist, because the strains on elther gides of a given
fold lioe must be egual. This indicates the presence of longitudinal
Shears acting along the joint as shown in Pig. XI-3 a,

The stress due to an edge shear
T can be calculated as follows:
Pig, XI-5

O, , =T/4 % M/z where

M =Th/2 and Z = BA2/6 , so that.

e

e

b 21T TR T
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LI-<4) DETERMINATION OF EDGE SHEARS AND FINAL STRESSES

L) Theorem of Three Edge Shears

Stress at Jjoint 2 in plate 2 is giv= Ipﬂg' Tj jt' T
an by: FPig. XI-5. . (H \
a n-iEEEuq-q_._TE.‘.ETl Fll.} o3 .J'I h3 !
* E'E LE j? "I::r—-r_,ﬁ:u-l
Strpess at joint 2 in plate 3 is give j—m o
en by: : -
U_Jruﬂ_amzmzwﬁ | II’LE (.uﬂ)h?
2 - " :

E “ [
3 13 5 "‘—m—_—_r Tl St

But the fiber stress at joint 2 from
plates 2 and 3 has to be the same as Fig. XI-&
the plates are monolithically commected; we may equate the two prev-
ious expressions to get:
E+E{E§¥E}+E-}$(E'L+H~EE} XI-5
R 2 %

This relation is called the theorem of three edge shears similar to
the lmown theorem of three moments.

Having determined the edge shears T, the final stresses can be
computed- by superpositiom,
B) Stress Distribution Method

The final stresses in a folded plate can be determined by the
stress distribution method in the following manner: Fig, II-7.

H | i =
' Iy
: , >
| comp, - | 57,
Jt-l il -:_[' i Fabe] : AE
F’:’L.':]&m:—_—-‘ o q,Tl
! tension | , -
' 1
Pl.1 | hy |
d ol Ay
Pig. XI-7 Stresses in indi-~ Stresses in indi-

¥idual pl. for Hu vidual pl. for {El
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The compatibility of strains at joint 1 necessitates that the
stress O at both sides of joint 1 be the same. Hence

o T “r ‘I'l £ 4 i d
G. = -—1 = (T  — o ar = [ a4 1 (1— d — i.e
o2 RE ol 'H. o ol 1 j_l ,ﬁ?
4 T .ﬁE &4 T A
'A'l - fgﬂ? = ﬂl] iy o+ Ay .i.E = {a‘ﬂe ﬂlJ Ll + .i_.g 6

This means that the correction of _thu Btress 0y due to Tl' which is
4 T.‘J,"”‘l* is egual to the difference {Hﬂ =0Uo1) multiplied by the dis-
tribution factor AEf{..a.fLEJ and the correcticn of the stress g, due
to Tl* which is -41"1..-’4&3 iz equal +to "M::E - ﬂ'nl_} multiplied by the
distribution factor L, /(4,+4,3.

These relations show that the difference of stresses in a Jodint
can be distributed on the Plates 1 and 2 meeting in Joint 1 in the

Doilowing ratio:
Distribution factor for plate 1 equalsé iy / {.a.l + 4,), eand
| 1] u 1] 2 " 11 ’I.i' (#1 o+ _&2)_

It is clear that the carry-over-=factor is - 1/2,
This method can be directly used instead of the three shears egua-
tion XI5,

II-5) BSHEAR STRESSES IN FOLDED FLATES

The shear gtressea due to slab action are generally wvery emsll and
need not to be considered.

The main shear stresses are due to the beam action of the differ-
ent plates; 'bhe;r are caused by the shearing forses of the plate loads
S and the edge shears T,

Our study will be restricted to simple prismatic folded plates
only.

Tue to the force 5/m ecting on a plate of breadth b, depth h i.a_.
larea 4 = b b) and span 1, the maximum shearing force Qpay &% the dia-
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phragms is given by:

g =5 L/ <
It causes parabolic shear stresses 7 ,, with a maximum value at the
middle height of the section of the plate equal to: Fig., LI-8,

%o Bax = ;_ & IL-7
S/m E
-ﬂl:-:lfr—l'lul|||1|11||l:||1|||f J
b L k- fl
Quasx 8.7.0D. ;2 B
£
Z
I . _.11‘ _
Fig. XI-B ..,I-..,Fb Shear stress diag.

-

When calculating the shear stresses T due to the edge shears T,
one has to notice that the edge shear diagram at any fold line is
gimilar to that of the h&.‘ﬂ.ﬂ.‘l.‘ﬂﬁ moment due to 3, i:a: pﬁrahu:l.tc with
maxrimum value at midspan and zero at the supports in case of simple
folded plates. It is therefore easy to prove that the edge shear T
at a distance x from the support of a plate is given by:

&4 T 5
T = T rr— — —
max 3 i 1) XT-8

where Thay 18 the maximm edge shear at midspan ; it may be calculat-
ed from equation II-5,
The shear stregs distribution on a section at a distance x from

the support due to an edge shear T at one of the edges of a plate is
alsc parabolic as shown in Fig. XI-9. Its maximum value T at the edge

_ T .
1/2 . . /2
x Z e
!
| Z h/2
| Z
Pig. XI-9 £ s




where T is applied is given. by:

5T
DAX ) .2 X
te et (1 ) XI1-9

The shear stress at midheight of plate is equal to T/k, Pig. Xi-9

If the plate is subject to two ke 34Ty _
edge shears ‘Il and TE at its top :; -
and bottom edges, the distribution " :s-'E |z _J_
of ghear stresses will be.as shown ; g " !

=
in Fig. XI-10. Z n/2
* Z
Fad T_
At the end diaphragms of a plate 2
—||'—‘|'—h
{x = 0), the shear stress due to an
¥ HE.- II=10
edge shear T is therefore:
4 T
T= — ‘{"“ XI-10
and the value at midheight of plate is
T
T _ “max
i D

In simple fglded plates, the sense of the shear stresses due to
gdge ghears is positive at the top and bottom edges of the plate and
negative at midheight and hence, these last values are to be subst—

racted Irom y .. ¢

The determination of the longitudinal and transverse reinforce—
ments as well as the web reinforcements will be shown in the follow-
ing examples.
I1-6) ILLUSTRATIVE EXAMPLES

1) It is reguired to cover an area 32.8 x 20,0 ms by a folded plate
roof, Columns are allowed in the outside perimeter only. Fig. II-11.

The arrangement shown in Fig. XI-11 gives a convenient simple
solution for the following reasons:
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=
5 7 v
T - Jl. N
S

Fig. n-u . R ey ol T e o T - - ..
4 g 1 2. T - h

a) The span of the folded plate roof is chosen in the shorter direct-

ion.

b) The span being relatively big, the system is chosen such that the
‘compreseive stresses can be easily resisted by the horizonmtal part
of the folded roof and the big amount of the tension steel can be
easily arranged in the edge beams.,

c) The height of the folded slab is chosen 1.8 ms and that of the edge
beam is —theoretically- G:‘?‘D me so that the total height of E_._E mns
is @ 1/7.5 the span 1 of 1B.4 ms.

d) A11 interior folded plates have the same length of 3.0 ms.,

The chosen concrete dimensions are shown in details in Fig. XI=-12,

Design of interi roof in transverae direction (slab action
Lesa ab_action

Assume slab thickness = 12 cms I.-r;nav:fl..-":r.lE surface = 0.12 x 2500 =$DE

"  guperimposed load (L.L, cover & plaster) / n® surface = 1*.'II-II?!I:L
Potal load on hordzontel slab ‘w = 400
Total load, causing bending moments, on inclined glabs

wi=w cos ¢ = 320

The slab may be assumed as fixed at b and e, so that the bending mo—
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ment in the transverse direction as Ivaiovws: (Fig. XI-13)

20 kg/m 400 KE/B 320 ke/m . Mo =l o

s =

T L 3,0m ¢ 3.0 | ¢

Slab action 110 170 110 Fig. XI-1:

Eﬂbxﬁ.ﬂ+ﬂcx5.ﬂ=-61&§4'ﬂi or E‘I.I.b+n¢=-?aﬂ

x 3.07 , 400 x 3.0%

Hb:ﬁ--D-i-EH{:IE.,U+HEI§.G=:—E{EEG

24 24
or In'lb+5H¢=-lEE‘_D
giving LLbn—EEG kgm and J.Ic=-EED}|:g:|

Hence, the bending moment disgram is as shown in Fig. XI-13. However,
the field moment in panels b ¢ and d £ should not be smaller <Than:

Mo = 320X 3.0° _ 105 iegm

24
The bending moments are very small for a slab thiclmess of 12 cms,
hence, a minimum main steel of &€ ¥ 8 mn/m may be used. The distribut-
gers are chosen 5 £ & mn/m.

Degign of interior bay of roof in 1 tudingl direction (beam action)

Since each of the 25 cms wide beams is common for two bays of the
folded roof, the beams belonging fo one bay are to be introduced with
a breadth of 12.5 cms

Ridee loads per bay

P-n = own weight of ridge beam + % load of plate b ¢ + weight of slope
concrete plus rain water in gutter, or

= 0.125 x 0.85 x 2500 + 1.5 x 400 + 135 = 265 + 600 + 135

= 1000 kg/m
a 3.0 x 800 = 1200 kg/m

g
]
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resolution of ridge.load

(Pig. XI-14)

Load on plate 1 = P‘b = 1000 kgfmu; 43 55
R R i TR ™ e,d —" -
i 1 =k ‘J“/j & d %
i ] " i 5, = c_'ﬂ - E'i.“ = 'D
because of symmetry:
Ec,d . Ed,c
Homeats and properties of individual plates
o =
| b B |A=bh z=_Eg-‘L s ¥ =S 1'5;"‘
Flate n n IEE - kz/m e
1 0,125 0.85 | 4,=0.105 Z,=0.0151 | 1000 | M_,=82320
2 ﬂ:lF.'D 5_,'00 %:ﬂ.ﬁﬁﬂ Ezﬂ.lﬁﬂ 2000 HuEnEﬂ-EH-D
Edge shears
The application of equaticn XI-5 to joints b and c respectively
Byas:! s T T M M
Joint b: G+E[-E+—b}+-5“‘=%“{-2;-'+i2-} or
4y 4 A L, o
T J T
0.106 0.36 ° 0.36 2 0.0151 0,180
8.72 T, + T, = 589 x 10° and
o T : LT : M
= I T T
U i T i
b o3 i~ [ i R BUE0
- E - e
e o3 2 (535 * 5,38’ ~ 536 " 2 T 6,180 oF
0.33 T, + T, = 28,213 x 10°
Therefore T, = 66308 kgs and T, = 6113 kgs

—

The final nermal stresses in the different plates will be determined
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by superposition as follows:

Hormal stresses in the different plates due to beam action

Plate 1: Fige XI=15

+  By=66308kE _ngg e 0
b= _[— bz
T

-
-.H-.-lEE +=280 +155
Moy= 425-'&.‘0#11:51:'1 Fig. II=15
B
Stresses due to: M, = 42320 kgm : Oy = + -%é = + E—l%mpg = ¥ 280 ksfcme
‘ « :
a
47 S
T, = 66308 kes =nb=+§ﬁn+‘*—f§§.‘%ﬁé=+aﬁﬂ .
Ih :
E’E=-I;-—3—El=ﬁ5ma—125 "
Final stresses: CFB. = + 280 = 125 =+ 1 "
ﬁ'.b = - 280 + 250 = - 4] "
Height of tension zone: = 0.85 T —222___ - 0.712 ms
155 + 30 -
Plate 2: Fig. XI=16
T =+6113
il & c = =7 +36.58 +6.8 -3 4
= Ho2
o .
e h - I
i ;
T,=~66308 kg +47 ~73.7 3.4 -30
12 M o i ™ Final
- M o =B4540 kgm Flg. XI-16
3 M
Stresses due to:. M . = B4S40 kgm : O, = * _92 _ + B4B4000 _ + 2
=
! 4T - '
P, = =56308 s O b=_4x5u505=_ =
p = =66 kgs b + = 3606 5.7
2T
-] 2x6630 - B

ﬂ'ﬂl-.—:l?:'l* 3600
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Flote 2 (contd)

4T
Stresses due to: Tc = 4+ 6113 kgs : O, = --A—E-E:-l-%% = 4+ 5.8 kg'
2T, N 2xsl1l3

o Bt -olamis | - aial s A
Final stresses: ﬂ'hn+4‘?-'?5._'?—3.4=—?_rﬂ "

UE“—4?+§E:E+E:B=—_&_‘L

Dlate
e . 4T, 4x5113 &5
Stresses due 01 e - ll:’,l.l kEE -] Er:. = _‘ﬁ? = —-E—EE—D— = = D #
e? 2x5113
-4 = —ﬂ' = ]
Tyss =~ 8115 kgs : O + i + ﬁ + 3.4 "
Pinal svresses: O, = .:!"‘i = - Ga.8 + 3.4 = o= S, "

The final normal stress distribution in the folded plate is shomm
in Fig. II-18.

The fl%al stresses caloulated above can be determined using the
stress-distribution method in the following manner:

ATeas ,&l = 1080 nmz ‘LE = 3600 mﬂ 'LE = Za00 mE
1080 5600
= = [}, = = 0,50
e P1* I560 = 3600 e D> = 32667 3600 23
Plate o 1 ' 2 ] 3
Dist. Factor 0,773 |0.227 0,500|0.500
+280 ~2B0. | +47.0 =17 ,0 (]
Jdigstribution +252 ~75.0 +23% 5.5‘ "25-5
Carry over =125 8] =11.75 +37.51+11.25
Disztribution =3,10 |+ 2.65 =13.13+13.13
Sarry over +4,.6 0 + B.57 -1.3%|- &.56
Distribution +5.07 |= l.50 =2.82 |+ 2.682
Oarry over -2. 54 O + l.31 +0.57 1= L.31
Distribution +1.01 (= 0.30. =1.03 |+ 1.03
Finel stresses +156 =51 =3l T




The results are approximately the same as in the previous solu—

tiom.
Determination of longitudinal tension steel

The longitudinal tension steel is chosen such that i‘b resists all
the tensile force T in the section. ;ﬂ.ccu::-ﬂd.ugly, the tension in any

intermediate edge beam 25 x B5 cms is given by: Fig. XI-17.

1.2
Tn1551?2—125=-135um kgs

Using high grade tension steel with J
£_ = 3600 kg/cn® and O = 0.9 x 2000

i.e. @, = 1800 kg/en®, we get: B jizezs

3 oy i

138 000 s

L, = —%ggo = 76.5 en® 134p28. _,Il._ELjI'..

Shear stresses in plate 1 Pig. XI-17
E. L

Max. shearing f t dia : m o 2OCEIEE :

B H-R.I"JILE. orce & phragms Qmax = > 2200 kgs

3 Spax _ 3 9200

Shear stress at diaphragms due to Ty, P 66308 kgs is:

am 4 x 66 308
L LR 5.5 % 1650 - 2=Bn
at mid-height T/ = 11.6 / 4 = 2,9 w
Total shear stress at mid-height = 13 = 2.5 = 10,1 »

In plate 2
B 1
Ha::: shearing force at diaphragms: Q = céb = Emﬂglaf = 18400kgs

Shear stress at midheight of plate T omax™ g Q—mgr = E E.E: r&Yi ].:g;..r"r:.u::lE

: A 2 3600
: ~ 4 = 66308
Shear strese at b due to T = 66308 kgs i8 ——————01 = "
b g 253 E a —Y TG 12.0 =

Shear stress at ¢ due to T, pay = 8113 kgs is given by:

. 4 x 6113 2
= = & ﬂ
E; 2= 1ifD G I .'::Efmn
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5 . 3 e ld l-l E
Ehear stoess at niddle of b o = ?.'i.? il e i & A2 k&."ﬂm

hdccordingly, the shear stresses mey be assumed as shown in Figs
X1-18 a.in which the mazimum value of 1= kgfcmz can be assumed pons-—

tant in the tension zone of the section.

Hormal stresses Shear stresses

Fig. XII-18

The regquired diagonal web reinforcement can be calculated as in

beams in the following manner: Fig. XI-18 b.

12 + 10 535 1 5
E—-IEI-i—Iﬁﬁﬁﬁlﬂ.Eﬂm 8 ¢ 13

In zone 1 (lfDB m) st =
e = z 12 = 223 x k m B.355 em™

" " 2 L1 -ﬁ-s‘b = > 3 1400 b @154 @ _'11:'
e 1
n L 3 " '&'E‘b = g ; T .12 x 5‘:55 x 0 ‘: E:E?‘ :'.'.EI:IE B ¥ 10

It is however poasible to resist a part of the diagonal tension
at the diaphragms by the cross reinforcement & £ B mm/m in which case
it is advisable to have symmetrical reinforcement in top and bottom
fibers of the slab as shown dotted im Fig. II-19. In such a case, one
proceeds as in beams by determining first the diagonal temsion (7..)
resisted by the cross reinforcements, where'rst = A, ﬂ;fb 5, aud the
rest of the diagonsl tension diagram is to be resisted by bent bars.

2 x 0,5 xx 1800 2
o (8 = = -E
Fonee Tet 5 % 20 5.85 kg/em

and the area of bent bars in each zone is therefore:

12+10 325 1 -
In zone 1 4, = ( ;‘ ~ 5.85) x 12 X == X 55 = 4.8 cu & @ 10

Similerly, one needs in gzone 2, &6 @ B, and in zone 3, 5 @ B / 1.08 ms.

- 214 -



A P | . W
;ir"f w:':\\'x

lﬂ"‘fi’f Details of disphragms R‘*-..:"‘"
by far @ distonce of 465 ~
#j*“' 1% & .

*‘I r— | i

ssin) |stam
K
*
T .
148 I
Detals o mgdle sectian of inlerior I S

. bay for a distance of 9.2 ms.

& 45/m
LR a ot

iy
[
B

g

T T
I x'*’f’ffjﬁfff’ -

Detoils of remfarcemants in plan {'a@rﬂq,::aa’l |

Fr:?. Xr. N



The details of reinforcements are shown in Fig., II-19.

2) It is reguired to design an interior panel "of the simple saw-tooth
folded plate roof (20.0 x 32.0 ms) shown in Fig. XI-20 for its omn
weight plus & superimpoaed load of 100 kg.fma surface,

- s

_l,ﬁ‘:ﬁ"r?f' R, e P i 1 9 P it et - o A A S

- B O AR, \"o..\\

F
_[. Fig. XI-20 3

Degign of interior panel of roof in transverss '-m-umﬂ (slab action)

The bending moments of the slab in the transverse direction shall
hummwthnumﬂmufﬂr&&mﬂhﬂic.hﬁcﬂ due
to.symmetry., Fig, II-21

Further, the plates 2 and & are short relative to plate 3, then
their-elastic reactions at cornars 2 and 2 dune to loading of these
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plates may be neglected. Hence

3
8 1 w' 1
2 "

EHE(E—rE%J-ru?’%_-Em;_

. L L
Multiplying both sides by f—z-r and assuming ¥ = é - 1—5 r We get:
2

2
B
EhLE{l+£}+H3ac=-f-4—§-.,h: but

L = :g%:r’* x88 2 17,4

Assuming w' = 320 kg/m° (refer to example 1), then

2
2K, (1+17.8) + 17,4 K, = - E“:E*“ x 17.4

Therefore HE=H5=-QED kg m and
w12 20 x 6.0°
.HEE.TE-EEQE_Q_E._*.,_ge:}Elm_920-52u kgm

By redistribution, one Day assume M = - i = - H} = 720 kgm; so
that a thickness of plate 3 of 12 ems and main Tein.orcements 7 @ 10
mn/m may be safely dcceptad. The distributers are chosen 5 @ 6 mm/m,

Ridge loads P Fig. XI-21

Ovn weight of plate 1 (amd 5) =esesmeses = 0.2 x 0.9 x 2500 = 450 kg/n
Load on plate 2 (and 4), 20 cms thick, + concrete cover + superimpos-
€d 1084 sessenreannarancssceens = 0.2 x 2500 + 200 + 100 = g0Q kg/m
Load on plate 3y 12 cms thick, .eec. = 0.12 x 2500 + 100 = 400 kg/m




Fherefore:

Pl::?q_:: own wt of plate 1 + ¥ load on plate 2 + slﬂ.zimg-%
= 450 + % x 800 x 1,6 + 100 - £22 = 740 kg/m’
. -
P. =P uhaﬂlnadsﬁmplatuazmd3+u—2+—-¢
2 5 'LE 1.5
% (800 x 1.6 + 400 x 6.0) + ;_3-2- + 0 = 2290 kg/m’
Resolution of ridge loads Fig. II-21
L]
51,3 = 55’4 = Pl = P¢ = 7HO kﬁfﬂ
8,1 =85, =P, / tand = 2290 / 0.75 = 3055 kg/n’
’ :
L]
EE;.E = 5312 = PE..I"'Ei'llﬂL = 2290 / ’-'J_.Eﬂ = %817 kgfm
Potal force on plate 3: § = 2 x 3817 = 7634 kg/m'
Free moments and proverties of individual plates
. 2 2
_ b h DB
2 [ b A =Dh &= — = MD = S 5
e
m m e n’ - kg/m kgm
1 | 0.20 |0.90 | 4y =0.18 | 2, = 0.0270| 740 | ¥ _,= 37.00x10°
i - 3
2 0.20 1.60 bey = 0.32 Iy = 00,0853 | 3053 HDEE 152 .65x10
3 | 0.12 | 6.00 | &3 = 0,72 | Zz = 0.7200(7634 | M .= 381.70x10°
& | 0,20 | 1.60 | k, = 0,32 | Z, = 0,0853[3053 | M= 152.65x10°
3
Edge shears
The application of eguation XI-5 to joints 1 and 2 respectively
Eives: "
T T T M M
Joint 1: D+E{—1+—1}+—'?'_-..-l. il..i._“'-"a.} ar
41 47 A 2 Qg &2

M i e P
1, Ty, T2 1 gzoo0, 1ses0,
0 2 = =
* Eﬂ.lﬂ * D.EEJ % 0. 52 b [ﬂ-ﬂz? +“ﬂ.9555}

17.36 T, + 3,125 T, = 1579968
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T T T T M m
1 g 2 i - ¢ o2 o3

Joint 2: == 4 2 (=5 4 £} = = (=<5 = ) but T. = T.
.ﬁa ..ﬂ.a .ﬁ.j .&3 2 ‘E'E 3-5 2 4
T T T T .

then TN PR o i e L W S (152650 _ 381700,
0,32 0.32  0.72 0.72 ~ 2 ‘0.0853 0.72

3.125 ‘I'l + 10.40 TE = 629713

Therefore Tl = B4699 kgs and TE = 35071 kgs

The final normal stresses in the different plates will be detepr—
mined by superposition as followa:

Normal stresses in the different plates due to beam action

Plate 1 : Fig, XI-22

T ='EJ'|"699 ""'13'?1[] +J—EE‘-E 1-51-2
H4-1
m#%‘unl Mnl 1: Tf DFil::a.l
_{+G.Eﬂ +137.0 =-94.1 +42.9
M
Stresses due to M, = 37000 kgm: r:r% =+ EI""E =+ Eggg.% = ¥ 137 kgf.:m?
&
_ 1 4xBY599
'.'L'l = B4BOY kga: T o=+ El = + e + 188,22
T, = = ET—]' R Mﬂ T Qn'.'i. 11 (1]
0 Ay 1800 .
Final stresses: 0, = = 137.00 + 188.22 = # 1s20 =
Plate 2t Fig. XI-23
; Tzn 35071 =179 +5% +4%5, 8 =82 .2
— ﬂ‘

Q.20
M o2152650 Kgn Fig. XI-23
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M
o2 . 7 42883000 _ 7 109 yp/om®

+1

Btresses due to M ., = 152650 kgm: 'El'E = + -zn;- = #5500
; 47

T - - e et . _ 8x BAG =
" T, = 84699 kgs: 0, = =" 3500 - =~ 105,98 =

a7 '

1 2x_B4699
i = — e = =0 "
e =" e 3200 .

2 L B2 33001 L azp .

]
+

T TE = 35071 kga: 0o _&2 =+ S5

2T
b v BBl g D15 w
3200

fnal stresses: gy = + 179.=-105.9 - 21.9 = #51.2 i

L

ﬂan—l'."a'?+53+4§.5 = = 82.2

. l.20
eight of tension zone X E5.5 4 £1.3 .

late 3: Fig. XI-24 '
B T_;-E:Eﬂ?l +53 +3.75 +19.45 +82 .2
:. Hh} “ﬂﬁ T, T5 Final
= 2 .
“ T, =35071 =53 -19.45 -9.75 -82.2
_#C!.J.E Fig. XI-24 - _
y _ - - =
resses due to H‘ﬁ = 381700 kgms I:F'E = + Efé = +* Eg—;m = ¥ 53 kp/em
. - 35071 | - E = - wl‘- = =19.45 =
aw L1 L TE = kEE: ﬂ‘l-_:_p - .&5 ?EUG
a-. +ET£“+E—ZEEEEE;=+9.‘?5 "
L T 7200
4T 2T
=+ g2 .= + 1985, Oy= - 5 = -9.75

" nom Tﬁ. m_ﬁﬁﬂ?l _kEHl E-E + E}—_:
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= - 53 = 19.45 = 9.75 = - B2.2 kg/cu’

le EtI‘EEEHE: mEE RSN ﬂrE
+ 53 + 19.85 + 9.75 =+ 822 m

3
The final normal stresses calculated above can be determined using
the stress-distribution method in the following manners:

Areas 4y = 1800 cn® A, = 3200 en® 4y = 7200 e .
e s e leuéﬂfﬂiznn o o = laﬂngﬂﬁzﬂﬂ i
My . 525§§fn?znﬂ e Dy = 32ﬂ3230?20a = Qs
Plate 1 | 2 B I 5 | 5
Tist. factor .Eﬂ:.'lTEE__:E?E'El'._EEB .5953.592 .,:mu.nll- 2
Stpess [+137 | =137|+179 |=179|-53 +53|+179 | =179(+137 |-137
pistribution 302.2|113,8 87.2]38.8 | 38.8 87.21113.8/202.2
carry—over |101.1| 0 | 43.6[56.9[19.4 19.4|55.9| 43.6| o |lo1.1
Distributicn "E?.B +LE.? EE.E 53.5 51.5_52*8 Llﬁ.? +E?.9
carry-over | 14.0] 0 | 26.4| 7.9 11.8] 11.8| 7.9] 26.8] o |1
Distribution "16.9]” 9.5]13.6] 6 ‘s 113.6! 9.5| 18.9
i | BBl D7 |, 6B] %8| 3 *s || 6.8 o | 8.5
: - + - - - + - -
Distribution a.4| 2.4| 5.8] 28] 2.8) s.al 2.8 4.8 .
Siower | 2] O Yozl e | Tl T 2.7 0 | 2.2
ptctmivution] 1 19 e Yool 007 | Touzl 17l 30| 17
Carry=0over - ﬂ.-Ejl o 3 0.9 +D.5 -D_.q- +{3|,-f+ -D.E i 0.9 (3] B 0.9
Distritution l- 0ub = [ G -D.Eu +'D.5 -D.§ +ﬂ.6 i O3 ! =
srapie | o3| @ o] ocel 0! oo T0.2] 0.3 o | 0.3
Distributien * 0.1l 0.2]%0.3) 0.1 | 01| 0.3| 0.2| 0.2
Final +43,0/+51.0|+51.0|82.1|82.1 _Ea_l 82.1|~51.0|-51.0{-43.0

The results are approximately the same as in the previous solution.

The f£inal pbraal-stress dist_rihu‘.:im in the folded plate is : shown
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Longitudinal main reinforcements

The longitudinal tension reinforcements are chosen such that they
resist all the tensile forces T in the sectiocn given by the area of
the tension zones. Accordingly, the tensiom at joint 3 is given by ¢
(refer to Pig. XI-25,.

T = Eﬂ;}_%_zﬂﬂ x 12 + EE;EEE-EE x 20 = 229059 kgs

Using high grade steel with f, = 3600 kg/en® and O, = 1800 kg/en®,

- B -z o

The total tension at joint 1 is given by:

we geti

mo[Er8 00, BESL L 202 115710 ke
A = 112710 _ gp 3z ap®

& 1800
The chosen reinforcements are shown in Fig. XI-26.

Shear stresses in the different plates

Fy- 1 740 x 20

PL-m:_-!: q = E_ = —'E_ = ?-ﬂrﬂﬂ EEE
The shear stresses are calculated as follows:
. “max _ 3 _7400 2
Due to @, at mid-height: Topae = § —Zax _ 2 A0 = 6.17 ke/em
Due to T . = B4o99 kgs: 0
= 4 max _ 4 x BUARTD = .
at top edge T=4=4 e D B.47
at mid-height TT = B.47/% =22 »
Total shear at mid-height = Topax = f‘" = 6.17-2.12= 4.05 w
Sn 4.1
Plate 2 Q e EEEEEE_EE = 30530 kgs

The thickness of the bhorizontal plates 2 and & is increased te 30
cms at the diaphragms for a length of @ 3 ms; hence the shear siresses

- 221 =



in plates 2 and 4 are caleculated as follows:
Due t0 Q.. at mid-height: TM=E-Q]:—-LI=§E%=S.5¢M“E

Due to T, — B4E9Y kps:

at joint 1 T, = <X D36 5.65

30 x 2000

Due to T, po. = 35071 kgs:

at joint 2 _‘_".x_.iﬁ}_ -

Total shear at middle of plate 2 = 9.54 - 2&55 - Ejéﬁ = 7.55 m

B 1 634 x 20
Plat = S =
e 3 ey = St= 2.2.5__.h 76340 kgs
The thickness of plate 3 is also increased to 20 ems for a length
of € 3 me at the diaphragms; hence, the shear stresses are given by:

Shear stress due to Qma: %; — 3.5553&533 = 9,54 kgﬁfune

Lat top edge (.jt 2) due to To pax = 35071 kgs is

4 x 1 Z

Tat bot. edge (It 3) due ©o T, _ - £ 3507 kgs 1s

4 x 35071
B = 5xs000 =251 om

Total shear at middle of plave 3 = 9.54 - 2 x 222 799

Web reinforcements

Arranging 7 § 10 mm/m at the top and bottom fibers of the Elab in
the 3 ms of increased thickness at the diasphragme, the shear stresses
resisted by these bare only (i.e. neglecting the resistsnce of the
longitudinal reinforcements and the concrete) is given by:

o a4 o

8 "8

Tat = b s

Hence, fof plate 2: t;lt = %g—';%@ = 5.18 kﬂfuﬂz

W S 2 x 0.79 x 1400 _ -
s " i Bt ™ o x s -7

where = is the spacing of the cross bars (14,3em)
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Assuming that the conerete can resist a part T, of the shear

gtresses (@ 0.25 1y fnp = 3.0 kgfnmE}. one can dispense with any bent
bars in the folded plates of the structure.

]:‘i.g;. X1-25 shows the normal and shear stresses in the folded plate.

2%

Shear stresses

SO s
Wi e in plate: 1-=2

Final normal stresses

Fig. I1-25

Tha details of reinforcementes in the crose section of one inter—
mediate panel, both at middle of span and at supports, is shown in
Fig. XI-26. '

The shown solution is only approximate, because the displacements
of the Jjoints are neglected while they do affect the intermal stresses.
For the effect of these dinpla.c'.amants one may refer to text books on

¥
the subject.

= 'DEEi.g;n and Construction of Concrete Shell Roofs . By Ramaswamy.
Published by Mc Graw-Hill Book ﬂnnpu.n:.. New York and Lomdon.

< PR o
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Zl— 7 DESIGN OF DIAPHRAGMS

The stresses arising in the diaphragms supparting folded-plates
of symmetrical shape and symmetrically loaded, such as the folded-
nlate structure shown in Fig. XI-27, may
be calculated in the fnllowing_ manners:

The ridge loads P.'l. and .'E'E acting on
the nodes of the folded-plate, Fig. XI-

27 &, cause plate forces El and BE F m
and these exert shearing forces Ql and

QE on the end diaphragms. The shearing
forces § can be assumed to have a para-

bolic distribution, Fig. XI-27 b. The
shearing force Qz can be resolwved into
the components ‘H"E and E[‘.2 which are the
forces I'I‘.:hat aﬂectirelr act upon the end
diaphragm (the force Q, is transmitted . Vo bz
directly to the support). As is appar-
ent from Pig. XI-27 ¢, the two smmetro-
al components "i'E produce banding stress-
@3 in the end diphragm; these can be de-

termined by well lmown methods. The ho-—
rizontal components HE produce tension
in the po:i:'l:inn of the diaphragm situated

between the two sloping plates of the Fig. XI-27
structure. These tensile stressea can, likewise, be :Lsﬂu.mmi to have a

parabolic distribution, Fig. XI-27 c.

As presented 4n Fig. II1-27 d, the end diaphragms may be designed
as two hinged frames (or the like), which are loaded by the shearing
forces shown in (b) or their components shown in (c). On account of
its far greater flexibility in comparison with.a solid diaphragm, the
frame is more conductive to the development of deformatiosns of the st—

— PR



ructure atv the nodes.

rample

It is requ.:i.i:-ed “0 design an intermediate diaphragm for a two-span
folded~plate roof (Fig. XI-28). Assume the cross-section and dimen—
sions are the same as those of the intermediate panel shown in Fig.
XI-12. The spans are 2 ¥ 18.4 ms. The loads are the same as thoge

of example 1 shown in Fig. XI-11,

I-""* | "F-j sL 'd:
d g :in * i | %, Py
' “‘.| '&.‘ | = 5 .
| I ! T g |
-4 < I Lot g i
¢ 7 e [ AR A i _.I'!—-ﬂb

* The diaphragzm shall 'J:Te_ assumed asg if it were simply supported at
both ends although it is continuous with the side panels, because the
depth of 0.7 ms at +he Supports is small relative to the depth of2,55
ms at the middle of the spans, The bending moment that shall take
place at the intermediate Supports can be reristed by an adequate ar—

rangement of reinforcéments as shown in Fig. ¥1-31.

Dimensions of diaporagm

Svan: 1 = 7.8 ms Breadth: b 0.30. ;s

Deapths: tmin = 0.70 mse tm 2+ 56 ms

i

Loads (Pig. XI-29)
The own weight is composed of three parts, namely:
Over the whole span W o= 0.3 x D7 x 2.5 = 0.525 t/n

Triangular load over outside 2.4 ms with
TAX W, = 0.5 (2.56 — 0.7) x 2.5 = 1.40 +t/m

Uniform load over middle 3.0 ms Mo e 1.40 t/m
Eaving computed the loads, the interna) forces can be det smined

as follows:



Zxternal and interpal forces (Fig. XI-29)

of inclined plate: (refer_to examplel)
= 2'x 18.40 = 36.80 t
U6 x 36.8 = 22.80 ¢

Total shearing force Q_ ..

QEIIBI.
Its wvertical component sesssnsEsmamnmy ¥

Its horizontal conponent sscsessnncass H = 0.8 X 30.B = 29,44 _t

e

L. oadas
¥ theor. wvalue
B M oIk I ” '
3
|l=
Nl |
WA,
E i_L' D .::.l—
J
i)
Thrust Aiag. ' '_:'"
Fig, XI-29
Reaction R = of 480 | LoBX2s® . 1 1.8 4 20.80 = 28.64 ¢

2 2

Moment My, = 28.6ux/38 — 082500 _ Lotixkuby 5

2802 _ 22,8227 =33.19 %
Qﬂ.ﬂ:,!:R = 2B.64 t T=HE = 29.44 t

The-bending moment, éhauing force and thrust dia.ga'. are in Fig. ¥i-29.
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Reinforcements (Fig. XI-30)

By
L]
b=3230 cms and 4 = 251 cms; using nor- —-“‘f—:_;—=2=l\ -—T— —r'l—‘§
5 | 2
mal mild steel, then O = 1400 kg/cm’. s 3 j |
I |
Eccantricity e of thrust T is given by: g H::' T_-: .‘
] I{E
e = M/T = 33.19/29.44 =113 ms, o 'w 9 !
i,e. the resultant T lies between the |
top and botton reinforcements of the ’ % J
A | !
diaparaga. In this case, .A.E and AH‘ are -ﬂ-—:—‘;—i"l'—"' 5.
inversily proportional to x' and x, 3
Fig. XI-30
where
i
X' =90 + 113 = 203 cms and x = 248 = 203 = 45 ons
then

_ 29.44 203 _ 2
A = == x 5= = 17.21 co 6 @ 19

29,44 _ 45 _
.@.én—%:rxgﬁ_ 3.82 em® 3 @ 16

Shear and principal stresses

28640 -
Shear stress T = =1 kg/cm
Bar s% 0.B87 x %0 x 80 _ 47
A & normal stres o = Soma 545 t i
Verag L & — 30 % 256 = 8. " ension-

Assuming that the inclination of the principal tensile stress with
the horizomtal is &, then

tan 2@ = 2% o 2XLBT

= i e 0.71
ar o = 17.8°
i.8. no bent bars are reguired; in spite of that, 3 @ 19 will be bent
and skin vertieal and horizontal reinforcements 59 10 mm/m (p 0.05 %

of concrete section) are arranged,

The detalls of reinforcements of the diaphragm are shown in Pig.
XI-31.

¥ distance Detween top reinforcement and position of H.

- 228 -



2.5¢

Em,ﬁhfo_.‘ﬂm. i~ ST

A
Sl 2
AP E
X
W ... & i*
: !
W
L o
== P/PE N

- 229 -



¥T-8 MULTIPLE FOLDED-FLATE STRUCTURES

If more thar two plates of & folde
more junctions, then it is ealled a multiple folded plate structurs.

d structure intersect at one or

(Fig. XI-32).

Y Y [

- [

In a junction b, where three plates intersect, there now occur
two different shear forces Thl and 'I'b3 as against only one such force

at each junction of a simple folded
plate structure. Hence, the eguation
of tree shears will be extended to

an egquation of.four shears.

Prom the condition of equal sT-

resses at the junction of intersec—

tion, (Fig. II-33) we get:
T 2T 2T b - M M )]
G s w e g IBLgeigRegd | o
1 i i 1 > ]
' Xi-12
Tc: 2 Tyo 2 sz; 'J'.":l 1 H-::E EE-"E
gbn?- = ﬁbﬁ or I-H L + = =+ -"-_ = 5 {E""‘ + z J
2 Ay L 'L,’v 2 3

These two eguations thus determine the shears T, . Ty and Tb_ﬁ

+hat occur at the junetiob b.
7o obtain the right hand side of egation II-12 in the form of the
- 230 -



'aquatinu'nf‘thr-& shears, tha'gansﬁ uf'uui was ¢hanged in relation to
th.lﬂ;"; of HEIE-

In me Tc' = u" “ hﬂ'\"ﬂ T-E = Thl + Tb} R RE DR W H-lﬁ
and eguations XI-12 can be given in the form:

T T M I
a 1 1 b i ol o2
bl
Al Al fE EE 2 31 EE § o
Ta T, = b1 Mos , Mea, e
3 3 i 2 23 s 3

In case of symmetry, Thl = Tbﬁ » ThE = 2 Thl = 2 ébﬁ XI-=15
The application of these equations is shown in the following sim-
ple example. (Fig. XI-34).

Illustrative example

It is ruﬁuirad to design the shed shown in Fig. YXI-%4 for a vert.
superimposed dead load of 100 kg/o” and a live load of 200 kg/a®, The
shed has a span of 12.0 ms between the columns and two overhanging
cantilevers, 3.0 ms each, on both sides. The slab may be assumed 10
cme thick and reinforced by &6 ¥ B mm/m in the traﬁsveraeidirdctimn of
the shed.

The intermal stresses in the folded Plate shall be determined for

the following two cases:
A) Symmetrical case of loading with dead, superimposed, and live loads -

on b d g.
B) Unsymmetrical case of loading with dead and superimposed load on

b d g and live docad on b 4 only.
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A) Symmetrical case of loading

In this case, it is sufficiant to study one half of the folded-
plate only (i.e. part a b ¢ d e) with half the beanm 4 e (1.e. 12.5 x
100 cms) and half the load P..

Ridge and plate loads (Fig. XI-35)

P, = 0.2 x 0.6 x 2500 + 1.5 x 550 = 1135 kg/m'
Po= 3.0 x 550 = 1650 "

Load on pl. 1, Eba = Ph = 1125 kg/m?

Loads on plate 2, Bﬁc = 0 and
Sep =3 P, =3 x 1650 = 4950 kg/m’
Loades on plate 3, Edc = 0 and
S a4 = |10 PG = |10 x 1650
= 5220 kg/m?
Loads on } plate 4, S, = k P
e 5 Fig. XI-35
= 822 yxg/m’

Bending moments in longitudinal direction (Fig. XI-38)

The bending moments in the longitudinal direction due %o a load 5
............ 5 e 1 "'ﬂls,f'.-"
is as shown in Iig. XI<-3a. - 55 L5

2
max. M_ +ve = 8 1%- - 4,58 = 13,5 8 Fig. XI-36
} T 1'|_ Y _I, J.=i,
Froverties of individual plates, Moments M &and stresses O,
b b | Asbh | 2=bh®/6 | s/m' |Mg=13.58 103 Ty = + M /2
Flate
cm em | . cm® om” kgs kgcm kgfcme
1 20 60 | 1200 | 0.12 x10 1125 | 15,19 x 10 G;h *125 &0

2 | 10 | 300 | 3000 |1.50 x10° | 4950 | 66.83 x 10° |GOba

08 - 44 Eﬂ
10 | 315 | 3150 |1.65 x10”? | 5220 | 70,47 x 10° |goc 0o%= 42

- o S Dﬁ.-?-
%4 112.5| 100 | 1250 | .208 x10° -EEE 1535 x 107 [0 =" ?E.Eu
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Edge shears
Applying equations XI-14 on the different joints, we get:

T

Joint b:  © +2Tb(—%-i—+-%5-_}+ x5~ = 3 ( :l'.,._ZEEE’_)
0 "'ETh{I.%GU*Eéﬁ'i}*HI]T.'E{I = 5 ( 126.6 + &4.6 )
or 7Ty 4+ ﬂmc « 256.8 x 107 (a)
Joint c: -E-;ETEE—E;-+—I;';—J+T-§§~ =%{-:§—2~+-;§ﬂ}
sobs + 2%, (g + sksg) + 3B =k M - 82.7)
or 0.330 T, + L3 T, + 0.317 7,, = 0.925 x 10>  (b)

Joint d: Becauss of aymmetry, Tdﬁ acting at joint 4 of plate 3 is egqual
o *ﬂﬂ acting at joint d of half plate 4, so that the egquation of three

shears 5.11 ite normal form can be applied. Hence

T

- S . 1:-]-‘---.!..1}4..,: né{_ﬂi' ﬂu:l
a

A3 2 By Ay 2 s Z,

T

Te R 1 )

5756 * 2 Ta3 Giss v i3m0 v © 2 (2.7 - 73.6 )

or 0.317 T, + 24235 Ty = - 58.15 x 10° (e)

Solving the three aquations a, b and o, the valuess of Ta' Tb and Tu

can be determined. Accordingly:

T, = 37.01 x 10° ., T, = - 2,47 x 10° and T4y = - 25.67 x 107

The stressea in the different plates due to “u and T are shown in

Fig. XI-37, whereas the final streases in the middle section of the
folded-plate due to this symmetrical case of loading is shown in Fig;
XI-38.

The longitudinal bending moments at the diaphragms of the folded-
plate are — 4,5/13.5 = = 1/3 those at the middle section (refer to Fig.
XI-36), hence, the final stresses at the diaphragms shall have the aame
ratio both in magnitude and sense and are as shown in Fig. XI-39.
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Symmetrical loading: Stresses in the different plates (in kg/cm?)

Hn s o Final streaseJ
Plate No. ]
kg cm kgs kg/cn®
M _.=15,19x107 T =0 I =+37,01x10° )0, +0. 40
b EE & a-lu * or” Ta T
e -126., +123,4 =3,2
#Eeu +126.6 0 —61.7 +54,9
M . =66.85%107 T, ==37.0 ~2.47%10° |0, 40 40
a2 b mﬁfc:' S gl
-‘H{--E 'I-E'-'-I--E? -31- 'E - EE
2
+44 .6 49,35 +1.65 -3,.1
- g o
lo3=70,47x10% T _=+2.47x10° [F =25,67x107 ﬂ'uﬂ;:rT;qrd
3. 2,7 ~1.57 -32.6 +8,53
L
&
" |
—:H*.-lﬂ e +35. 148 +16.30 =25 .25
" 51
2
a 0% .5 +82 .4 o
5 & ‘m+E B
3 | | A
™ +73.6 —&1.6
e 125 73 7 0 +32.53

8 5 Sec. at Diaphragm .
Fig. XI-38 Fig. XI-39 ’

T E}u' -



-B) Unsymmetrical case of loading (Fig. XI-40)

Liwve loads of 200 kg.fma are assumed acting on b ¢ d only.
Patrzs kg Eriase ks Friesaky B=fooks

iy
S e
Eb B

=

Gb Pig. XI-40 >h

Ridge and plate loads

Py

Py

Fea

= 1125 kg/m', P:: = IIr.EEEI kg/m', (Refer to case 4)

0.25 x 1.0 x 2500 + 1.5 x 350 = 1950 kg/m'

= 3.0 x 350 = 150 kg/m"y, P_ = 0.20 x 0.60 x 2500 + 1.5 x 550 =900
E kg/m'

olution of ridge loads

Loads on plate 1 S, _ = P, = 1125 kg/m’

Lo

Pro

Sh'n = 0, Ecl.h =3 PE- = 3 x 1650 = 4950 kg/m!

2
" w3 Sc,a= 0P, = 5220 kg/m', g, =0
= ow " & E'd..ﬂ = 1975 ksfﬂr
" n 5 Eﬂ_'f = 0; S_f’ﬂ_ = 10 Pf = 5220 k;..r’m'
L1 i & BIIE = 5 Pf = 3 X 10513 = _315-0 .'I:;'.r’m', BElf =0

" " 7 3 = P_= 900 ks{ml' -

Eyh g

perties of individual plates, Moments M _and Stresses

The properties, moments and stresses of plates 1, 2 and 3 are the

same as in the previous case.

® b A=bh | Z=bhe/g S/m' |Me=13,558 10° -
Flate o }f : (] A2 55 % B MEIE
cm_| cm &m om : kgs kg cm kg/om
# | 25 | 100 | 2500 |.417 x10° | 1975 [26.66 x 10° |Goc=, 23°¢
m 1 1 % 5 o+ o ol
5 315 | 3150 | 1.65 x107 | 3320 44,82 x 10° |goa=r 2/°10
& 10 | 300 | 3000 |1.50 x10° | 3150 |42.50 ¥ 10° Jg; = 28,33
- L o
7 20 60 | 1z200 ! ] - 3 E_—104.17
0.12 x10 900 112.15 x 10° |02B= =104 15-
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Zige shears

The eguations of edge shears applied te joints b and ¢ will be

the same as in previous case. Hemce:

7T, + T, = 256.Bx 107 (a)

Joint b:
0.925 x 10° (b)

Joint ©: ﬂ-}ﬁﬂ Th + lu3 Tc + ﬂ-}l? de =
M
)

by

T T.:- M
Jn.‘l.ntd}:_‘:;_- "'Ede f--%;—+—%;—)+2-;fz=é{zgé+

m 7
%g +2 T3 (stsp + stng) + EEEE§ = 3 (=42.7-63.9 )
= 53,3 x10° . (c)

or
am T M, M '
1 T 1 ol a
Joint dgi — o2 + 2 Tys (f— + )4 == 5 (= +. —22)
ol - i PR D £ . %3,
s + 2 ‘I'J:15 (2 + 51513:' + 5 (=63.9=27.16)
or 0.80 Tyy + 1.43 g5 + 0313 Ty =~ 45.5% x 10°  (d)
T ; T M M
1 1 5 Py 06
Joint f:: ‘IEE +2 1T ¥ )+ —h = f.E_E i b
™ s I ag 2 2%V T o
T -1 1 ' X
EI% + 2 Tf {m + m} + ;ﬁﬁ =5 (=22.16+28,33)
or 0313 7,5 + 130T, + 03337, = + 0.585 = 10° (&)
T M M
; & ’ 1 1 1 ob EE
Joint gz — +2 T, ( + )+ 0, =25 (=4 )
f —l— -.J.-'_ = l - -
3 + 2 TE {_‘,':EI'DU + IECI'D} + D 5 (28.33+104,17)
or 0,330 %, =+ 2337, + O = = 66,25 x 10° (%)

The solutioca of these six equatins gives the required edge shears.
T = - 1.7% x 10° kgs

Tb =+ 36,93 T 11:'3 kg‘E : o
Typ= - 28.36 x 10° kgs Tas = = 15.25 x 10° kgs
T = + 26.86 x 10° xge

P, = - 3.243 x 107 kgs
The stresses in the different plates are shown -Ln"Fig. XI-41.
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Unsymmetrical loading: Stresses in the different plates (in kyume}

M, T Final stmnses!
Plate No.
kg cm kgs kg/en®
01=15.19x10° | T _=0 1,236 95x10° Oy, 0y
; ._—:LEEI.EI 0 * L —-3‘5.
_.H_,_Eﬂ +126.6 0 ~61.55 ' +65.05
Mopo=66.83x10 T, =-36.93x10 |7 _a-1.74x10° |0, Tl R
¢ | -sa.6 +24 .62 2,32 22,3
2
.10 +Hidi .6 +49.24 +1.18 -3.5
B, 5=70.47210 I1_=+ L.74x10% [0 5228, 3631030, 40, +0,
4 L83 +42 .7 =1,1 ~36 °3+5.§ -
3 2
5
l~ﬁ=.1ﬂ 42,7 +2.2 +18 -22,5
u{}&m.aan@hm =-15.25x107 T.=+3.24x10° |0, +0. O
ds5 : Mg HTdE Ty
-27.16 +9,68 4,1 -13.38
B
'h-??-.l.E -191-5'5 -2 o 05 +5.l-?'q"
Pig, XI-41
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Unsymmetricel loading: Stresses (in ke/cm®) conpinmued.

H qu. Ede_ + Tld.ﬁ

= = {"‘ 2&-55 - 15125,: = T 4‘}‘51 t
: !

Hu T Final strasaa;[
Plate Ko,
kg cm kgs kgfcmz
g=42.5x10° | T =-3.243x107 T ==28.36x1070y 0y <0,
' E. @ “f g
+28,33 +£416 ~37.8 =7.31
5
—-28.33 -4, 32 +18,9 -13.75
Am o 3 o
¥ p=12.15x10 T =+28.36x10" 7, =0 ﬂ-“u:- + ETE
i - hl’mil =+ -ED ﬂ'_ -?I
i ;‘F* i_— ] 3
|! +20 +104,17 —48,1 0 +56.07
+
M_,=26.66x107 T., =43.61x10° 1T =0 [
o4 db& @ “nq Tan
=63.9 +59.77 0 +5.7
4 2 g
g E_ a -
IEE +E‘3l9 -.3'4-9 D +Eg
Notes:

Fig.

X141 (comtd)

Stresses in middle section of folded-plate f or case of

unsymmetrical loading

Pig, XI-42
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Longitudinae]l main reinforcement

i —

It iz clear from figures XI-38 and XI-42 that the main tension
takes place at the middle of the vertical ‘plates a ﬁ, d e and g h. It
is bigger in the case of symmetrical loading.

Assuming that the longitudinal tension reinforcements resist all
the- tension forces T in the section (area of tension zone), then:
For plates a b and g h, we get:

Height of tension zone = %:—;—fﬂ'i?i = 57.2 ecos and

Total tension T .seeees = EZJI-E_EE-E&-‘-ET]{ 20 = }?125 kEE

Choosing high grade steel with an average _ = 1800 kg/cm® for the

main reinforcement, we get:
Total tension steel iy = 37123 / 1800 = 20.62 cm® chosen 7 <4 19

For plate-d e, we have
Total tension T seeees = &5—1:"2-—"'-—5-:& ¥ 100 x 25 = 51400 kgs

Total tension steel A, = 51400 / 1800 = 2B.50 ca® chosen B 4 22

A% the diaphragms, the tension takes place in the upper plates,
with a maximum value at joints ¢ and f. Hemce

Max. tension T/B eesss = 7.5 x 100 x 10 = 7500 kgs

Using normal mild steel with allowable etreas 0, = 1400 kgfﬁnz ;
we geti

Total steel p&:_'-m .l.E = 7500 / 1400 = 5,30 cmE chosen 64 8/m
top and hut:tum.

The details of reinforcements are shown in Fig. XI-46,

Shear stresses and web reinforcements

Plates 1 and 7 (a b and g h)

Max. shearing force at ﬂ.iaph.i:;ﬁ.gns: =] =-

P,

h'L
2

- 25u12
2

= 6750 kg

Ehear stress at midheight of pl®. Tm = g E = 2 57250 = B.54 kgjma
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Shear stress at diaphragms due to Tb masx = 37010 kgs is:

4 T
max _ 4 x 37010 = B 44 kgfume

E.t tﬂp ﬂdsﬂ----p-q-l-i---i---llni. T—‘.-b—{-u- Euxlaﬂﬂ
ﬂ.t ﬂid—ﬂﬂish‘ﬂ illllli.rlllillll Tfﬂ- = E.“ l'_f '4 = 1-5“- FF
Total shear at mid-height seveeese. = Baddl = 1,54 =6.90
Plates 2 and & (b ¢ and £ g)

Se,vl  4950x10
Max. shearing force at diaphragms: qmax = -—E—- 3 = 29700 kgs

Shear stress at midheight of plate 7., = 2 q:‘“.% £255% 14.85 kg/ca®

The shear stress being high, it may be-advisable to increase the thick-
of these plates to 16 ems gradually towards the diaphragms over a len-
gth of 3.0 ms; in whieh case T, pay Will be reduced Lol max® Where

' =
Ta max 2 1s x 300

Shear stress at b (and g) due to Th may= 37010 kgs is:

T, = 22000 | 5 o) posen?

16 x 1200

Shear stress at ¢ (and £) due to Te may™ 2470 kgs is:

o 4 x 2470 2
Te = Tg5 1405 = 051 kelen

I?l ﬂ- l - E
9.2 - ke = 7.14 kg/co

Shear at middle of b ¢ (and f gJ)

Plates 3 and 5 (¢ 4 and 4 £)

The thickness of theae plates is also increased gradually to 16

cms over 3.0 mz at the, diaphragms. Hence:

]

2 1320
To max = % It x 315

Shear stresses at ¢ due to Tc mayx = 2470 kgs and at d due to

9.32 kg/cm®
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Id = 25670 kgs are respectively:

_ 4 x 2470 2
i T = 15 1500 = 0.51 kg/co

Td. = JH—‘E&.E.'.EE = 5.35 (]
Shear at middle of ¢ d (and d £) = 9.32 - $22 = 2222 = 7,85 kg/en®

‘Plate 4 (d e)

B i 227 Ex.lz = 13650 kgs

=, 136 P 2

Due to Td = 25670 kgs e - '
i . 4 x 25867

- Tﬂ'EE:!.'lEUU:ﬁ'#E ks..r"me
Shear at middle of d e = B.20 = iﬁﬁﬂ = 7.55 kg/en®

The distribution nf-the shear stresses on thc different plates is
squun in Fig. II-43.

Fig. XI-43

Diagonal tensicn reinforcements

If 6 § 10 mm/m are arranged at top and bottom fibers of plates 2,
2y 5 and 6 in the 5.0 ms of increased thickness at the diaphragms, the
diagonal tensile stres&ua that can be resisted by these bars enly(i.e.
neglecting the longitudinal rﬂinfércemenrs}, are given by:

B4 05 2 x 0.79 x 1400
bs-. 16x 16,67

= B.27 kg/cmt _

This value being bigger than the shear stresses in the mentioned pla-
tes, no bent bars are required. Further, if the allowable diagonal

tensile atréss i 6 L:g.i’cmE, then the required a::-ea qf steel to be bent
in the wert. plates shall also be small and may be chosen by designer.
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Besign of diaphragm

The main dimensions of the diaphragms in longitudinal and croas-

section are shown in Pig., XI-44,
I
e .--.h :
o __[" Ei_.: a -J;}';
y 3. : h.?._

To be able to design the diaghragms, one must determine the maxi-
zum internal forces (bending moments, shearing forces and thrust).
Toe bending moments and shearing forces shown in Figs. XI-45 b and o
can be determined from the vertical ridge loads directly. The thrust
diagram Fig. XI-45 e) is to be determined from the parabolic ahearing

force distribution on the diaphragms. (Fig. II-45 4)

i

HIETT

TN

ol

Elm

b.} B'H"n'

Fig. XI-45
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Yoads
Assume breadth of diaphragm = 40 cms, depths at b, c and d = 60, B0 &
130 cmsz respectively, i.e. welight/m depth = O.4% % 2.5 = 1.0 ton. Thus
Own weight: at b = 0.6 t/m . it ¢ = D:E- t/m and at d4= 1.3 t/m.

Ridge loads:

P, .= 1,125 x 9 = 10:125, P_ = 1.650 x 9 = 14,85, P, = 2.275 x 9 = 20.5"

Maximum shearing forces of different plates

-Plata 1 (a8 b) cemennnas By =-1.125 x 9 = 10.125 % g distributed
. Plate 2 (b €) cesssssse Qoo = #4950 x 9 = 44.550 1 ; parabolically
PJ.nj:e 3 (€ d) sssesesss Rz = 5.220 x 9 = 45.980 ¢ % on plates l=4
Plate & (d &) avecensss Qg = 2.275 x 9 = 20.475 + ) Fig. XI-45 4.
Thrust (along center—line of diaphragm)
At point b ' Hb = = 10,125 x 0.0333 === 0,337 +
At middle of b c = 0,337 + 24222 x 0,999 = 22.60 ¢

At point c (left) N, = =0.337 + 44.55 x 0.99%= + 44.18B6 t
e w w (right) N} = =10.125°x 0.344 + 44,55 x 0.939 = 38.35 t
" w od Ky = =10.125 x O.344 + 44,55 x 0.939 - 46.98"x

x 0.995 = -B.396 ©
The corresponding bending moment, shearing force and thrust are shown
in Pig. XI-45.

DeﬂiE gf different sectlions

The mections shall be designed by the U.S.D-method assuming an ave=-
rage load factor of l.6, concrete with f ep = 165 .’cg..n"n'.n:lE and bhigh' grade.
stan;. 36/50.

Ear:.tiun-“I—I. at ¢ 40 x B0 cma

2 2
unm,le5xﬁ+n.ﬁx1+mzx§ = 33.375 mt M = 1.6 ¥ = 53.% mt

5
E =+ 44,186 t (tension), K, = 44.186 X 1.6 = 70.698 +
¥y ol :
g %gﬁ = 055 ms &g = 0.755 - 5’;:—5 + 0,05 = 0,405 ms

or M .= 70.698 x 0.405 = 28.33 mt
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M ;
cp

Tae value of ¢ being bigger than 2, then the failure is ductile and
0o compression reinfercement is reguired. Table 4-8 gives T = 0.85 ,

g o M 28.63 x 1u5 + 29:898 x 10°
s " fIon 4" .11f = 5800 x a.

= 12.47 + 21.82 = 34.29 ex®  chosen 7 # 25

Section Li=-II at d 40 x 130 cams=

M = 10.125x6 + 0.633x%.5 + 9=§E§x4 + 14.85x3 + 0.5:3.1ax§ + n.sxiilﬂ

X % = 119.182 mt at center line of column.

Bending moment at face of eolumn is given by:
= 10.125x5.35 + 0.6x3x4.15 + Qagiixﬁ.ﬁﬁ + 14.85X2.35 + 0.8x3.10x2335
+ u.5xiﬁlﬂx5§§§ = 101.13 @t | (design value for section IT-IT).
M, = 101 x 1.6 = 161.6 mt, N = - B.4 t, K, = =B.4 x 1.6 = -13.44 ¢

lEl.E = E-ﬂ:‘ ms , EE = 12103 + 1—52 = 'D-u? = 12,61 m. 830 that

pE e

=X ., e or Mo, = 13.4% x 12.61 = 169.4 mt
183 = cl/w giving c = 2.43 ) 2 ana n = 0.875
" 169.4 x 107 _13.84 x 105 _ 4885 = 4,15 = Wkis ol

s ~ 3800 x 0.785 x 123 0.9 x 3600
chosen 9 & 25,

Section ITI-IIT at top of column 40 x 100 cms

Bending moment at d on loaded slde = 1l19.18 mt (refer to sec. ITI-II)
Bending moment at 4 on unloaded side d h is Eiven by:

M=EB8B.lx6 + 0.6x i—ﬁéﬁéi + 0.2 x % T4 +9.45 x 3 4 0.8 x 3.19 x %

+ 0.5 x % 3.19 x 3/3 = 85.83 amt
Bending moment on column = 115,18 - 86.83 = 32.35 mt



Gorresponding normal force: N = 70,974 ¢
Assuming an accidental eccentriecity = /10 = 0.1 m then
Htata.l = 32,35 + 0.1 x 70.974 = 39,45 nt therefore

M, = 1.6 x 39.45 = 63.12 at and N, = 1.6 x 70,974 = 113.56 t

e = i%‘:’% 0.556 ms, e, = 0.55 + % - 0.05 = 1.005 ms so that
Mo, =8, & or My = 113.56 x 1,006 = 114.24 mt. and

; 5
95 = of/ MBI L. giving c =2.28) 2 and M= 0.7 so that

5 o -
L 1l4.36 x 107 113,56 x 107 _ B g 2
A'E = D.76 x }E’DD x 95 0.9 x 3600 = 43.595 .3‘5"05‘ 8.9 ecm

Ohoosing 4g = A} = 0.5% , then &, = Al = 922 x 40 x 100 = 20 &’ or

4 « 25 on each face.

Shear gtresses and diagonal tension

= 10120 ; 2
Qp = 10.12 ¢ ‘Eb = 5By x 50X 55 " 5.28 kg/em

Q, = 27.02 % M, = 33.37 mt P tana = E?ig = 0,158

- M
Rnhund%:ﬁﬂ-&iz?-tﬂ— 2L X 9:208 19, ¢
C.87 d 0.87 x 0.75 v
Neglecting the effect of N = 13000 ' 2
' LeEmraoxTs 120 e/

Qq = 31.68 t . My = 119,18 mt tanc. = 0,158
: 119,18 x 0.1
Reduced Q; = 31.68 = %ﬁﬁ = 14,18 % so that
= 14180 ; 2
Ta = 5B x 40 x 133 = 33 Eefem”

The given study shows that the shear stresses in the diaphragms
are relatively lowi- in spite of that bent bars are arranged as shown
in Fig. XI-46 which gives the details of reinforcements in both the
diphragms and the folded-plate nearby.
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AII. ITHIN SHELL STRUCTURES

XII-1 - INTEODUCTION

The roofing of large unobstructed areas, with & minimum amount
of material is a goal that has claimed the attension of engineers and
architects for years.COf the various types of roof construction, the
concrete shell by .its strength, beauty, simplicity and ecomomy of
construction, offers the best possibility of attaining .this desirable
end.,

The famous big monumental domes thet have been constructed in
the last centuries ( 1l6th. to 19th.) depended in their strength on the
big masses of the building materials that were used, as can be seen in
the following three examples :

L F.0 |

i i

Fig. XII-1 Pantheon of Rome Fig. XI1-2 Cathedral of Florence
1) The pantheocn of Rome shown in figure XIT-1 with a span of 43.5 ms
and a minimmm dome thickness of 2.70 ms.

2) The Cathedral of Florence with a span of 42 ms. for the innmer dome
and a thickness varying between 2.1 ms, at the crown and 2.42 ms. at
the foot-ring as shown in figure ITI-2.

3) The double-walled dome of Saint-Peters Cathedral in Eome, having
a span of 42.0 ms. The +4wo slabs of the dome are joined together at
their shoulders giving a total thickness of 2.8 ms; the immer shell
is 1.6 ms. thick while the outer one is 1.2 ms. only as shown in figu-

‘e X113,
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Due to the continual efforts of engineers and sientistsand the
available technical Ttools, it has been possible to analyse the

mations and internal forces in different forms of shells

defor=
sult

and, as a re-
+ it bas been fogund that it is rossible to construct Very +thin

--|-l1i|-— Hé,
1) -.ra-an. [
l 1

Fig. X114 Scott Factory at Jena

¥ig, XII-3 Baint-Peters Cathedral

shells eovering relatively big spans and having very big strength by
giving them convenient structural forms,

The 6ems.- shell ysed as a roof for the 40 ms. span Bcott
factory in Jens,shown in figure XTI-4 » Eives an example of the tre-

mendous saving in the building materials that can be achieved by the
use of moderm shells.

The relative Toof thicknesa of

the old and new domes shown 4in figures
III-1 to

i

ALTI-4 is illustrated in figu-

re IIT-5 by proporticmally thick rectan-
gles.

IR
.. HUHIE
N
IS

|

i

n.r._.lif.-...

Many different shell-forms of sin- Relalive raof thickness
gle and double curvature proved to be of of elroctores 110 4
very high resistasce, ecomomic, easy +to Ple, YTI-5
construct and architecturally very impres- et

Sive. Samples of such exiting shell strot-

ures are shown in the following figures: ITI-23 and 24 for surfaces of
revulutim;; I11-7%, 7&, Bl, 82 and 87 for cylindriecal shells and XIT-
106, 110, 114 & 115 for double curved shells.

It has however been possible to construct reinforced conerete

shells having a ratio-of thickness to span almost equal to that ‘provid-
ed by nature in ite protective covering of -an egge

- DUE -



Except for some simple forms, subjected to few simple symme -
trical cases of loading, an exact analysis of concrefte shells is g
difficult, if not impossible, task because the design must take in can-
sideration not only all the variablesin lgading and physical make-up
of the structure but also the physical properties of the materials ysed

gnd their composite action under load.
However, a qualitative understanding of the fundamental nature

of the behavior of some forms of shells can be gained without detailed
mathematical analysis end in many cases Buggests & reasonable safe me-
thod of solutiom.

Such solutions are generally accepted because of the remarka-
ble reserve strength of shell construction, which makes it practically
" impossible for a shell structure to collapse.

ITI-2 LOADING

Dead weight : We shall now discuss the different loading con-
ditions that are of importance in the design of dome structures, We
are principally concerned with the load compoments in the direction
of the meridian, in the direction of the rings and in the direction
normal to the shell surface. The most important load is the dead load
B composed of the weight of the structure and the roofing. Using the

notations :
dead weight per unit area of surface

E =

I-.q: = component of g in direction of the tangent to the meridian
F‘ a m (1] L1 T e i w - L1 " i -Ii

PI' = " L " normal to the surface of the shell

we get : ( Fig. XII-6 )

P = g siny

! '5‘-‘{ tﬂl" A.r.r'..ll‘

3=

p = 0
> . B
;Jﬁ
= cos P
P, E
Fig, XIT-6

Live load
The live load P ( e.g. the snow load } is generally assu-

g -E#a -



med per mz horizontal. Referring +to
figure XII-7

we geat i

P = p siny cosw

L
= 0
Pa
B = P EGEE LTE] .
r FIG. XII-7

Wind lcad
The wind load of shells is composed of pressure on the wind
side and suction on the leeward side. Only the load compenent acting
normal to the shell surface is of importance, since the other compo-
nents are due to friction and arse almost equal to zerc. In order to
calculate the wind. pressure, one
can use the following hypothesis,
which has the merit of great sim-
plicity : ( Fig. XII-8 )

p.=90 , p=0, p=wWsin¥y CO389
y R - T

i Wind iraction

in which Wes= the wind load / m°
surface at @ = 0 , Y =N/ 2 .

This distribotion can be used for
cylindrical and spherical shells

the introduction of more exact laws FIG. XIT-8
will wunduly complicate the calcu~-
lations . One may assume
w = 0.269 for the sphere
and
w = 0.45 9 for the cylinder

whers q = the specified wind pressure

For all other shells of revolution values will have to be assigned

according to their shape between these two limits,

¥II-3 SURPACES OF REVOLUTION

hoofs and floors of circular big Span areas m&y.h! flat and
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supported on any convenient system of girders as shown in figure XIT-9a
or radial frames as shown in figure XII-Gb, f.xirékﬁf

In mn.n;r cases,; the choice of g reinforced comncrete surface of
revolution e.g. a cooe or a dome ( Fig. XII-4) results in an ulti-
mate saving in materials and cost even when the gregter cost of the
Bhuttering is taken inte consideration.

In the following, we give the general principles inwvolwed in
the design of simple popular forms of surfaces of revolution according
to the membrane theory.

1 - Membrane Theory of Surfaces of Revolution

In this theory, it is assumed that the thickness of the shell
ie Bo small that it may be considered as & membrane which can resist
meridian and ring forces only i.e. +the bending moments due to the
fixation at the supports, unsymmetrical loading and similar effects

are neglected.

a) Analytical Method ( Befer ta figure XII-10 )

It will be assumed that :

r = radius, normel to axis of rotation, of any circular ring
at a horizontal planes z =

- 221 -



¢
F
v
< | %
Fig, XI1=-10 J| Axis :i’ rpf:ﬁan.

radius of curvature of meridian
cross radius of curvature along the mormal to axis of rotation

resultant meridian force per unit length of gireumference

0, t where O, = meridian stress and ¥ = thickness of shell
resultant ring force per unit length of meridian
o % where E«-E = ring stress

herizontal thrust ef shell per unit length of circumference

sum of vertical forces above zz ( expressed through the angley)

In order to have equilibrium at any horizontal section 2 Z ,

vertical component of the meridian forces N, mest be egqual . o
we

the
the vertical load above z g per meter run circumference. Hence,
Hjﬂf?ﬁ'r.'-
2_H=HMperep b4 b YA Npeesp B
z RS
I [\1\
/ z
M, .
P Wy imp) N
- l
.'
Fig. XII-11
W.F.—"En.":':H,Psiﬂm or
K, = W,/ 2mn rsin, (a)




But r = T sEiny , 8o that N{p can also be giveﬁ in the form :

Ng = Wy /2nm 5 Bi‘l‘.‘l.zw (a®)

The horizontal thrust §H per unit length of circumference is :

H = Wy /2% r . tanyg = N, casw

_ considering the equilibrium of the element ds wunder the faorces shomn
in figure XII-12 , we find that

Hr oa_ //:-'__L\ Hr o'a

: fﬂ’-.-?r’rﬂj{r’:ﬂ'r /s reer . raode {H.-n"rﬁ’)fnf..frjdfg

Y

L]

a

% : 2
) o !

‘: h{q il - r I,.\.i; u-".r-'";
Fig., XII-12 ‘% o :
-l'rbfg ﬂ"d‘ -ﬂ":’ J

Mg s

R ds d8 = (H+dl ) (r+dr,) d6 - Hr d8

Heducing by df and neglecting dH dr being a small value of the se-
cond degree, we get @

N, ds = Er + dHr + H dr - Hr or Ny ds = 4 ( Hr ) i.e.

B, =d (Hr ) / ds (b)

If the dome were simply supported, the maximum ring force at
the lowest strip would be : ( Fig. XII-15 ).

mar. N, -=Hzxr

This force must be resisted by tension ring reinforcement given by

_LE = [@HIax. H‘E fﬁg
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The relation between the
external forees and the internal
stresses can be determined if we
consider the equilibrium of all the A r -

forces acting on An element dnl f
dsE y in a radisl direction nor -
X J'h‘r'
mal to the surface of the shell f s i

( fig. III-14 ) as follows :
Assume radial comporent of exter—
nal forces on the element : M
Py d8; as,
Radial compoment of the meridian Fig. XI1-1
force K, ds, due to change of its direction by an angle 4y is
By ds, 4w
Horizontal component of ring forece Nﬁ d.sl due to change of its di-
rection by an angle 48 is :

HE- lial de

Its radial component is

K. ds, d6 sin
{ N e E . ¢

The equilibrium between these forces is Biven by the relation

N, 45, 49 + K, ds; 48 sing =D _ ds, ds,
But ds; = r, dv , @s, = rde =r, siny a8

Therefore, we get :

- BB o



R,

Bl

T, siny 48 d¢ + B, 3 dw 4@ sine =p, T, d¥ r; 8inv dé or

BTy # By Ty =Ppn Ty Tp i.e.
;—:—- + ?;2 = Pp (e)
For a spherical surface I, = ::52 = a and
R, + By =p, = | {.r:'J
For a conical surface Ty == and
N, = Py T (c™)

Accordingly, the meridian force can be determined: from eguation
(a) while the ring force from eguatilons b or ¢ .

Graphical Method

The meridian-and ring forces in surfaces of revolution whose me-
pidian does mot follow a simple mathematical equation can be det—
ermined using the following graphical method (fig. XII-15) which
is based on equations a and b.
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Assume @, , L iI} »+« 8%c. are the loads on the zomes 0-1,

B=2, 0-3 ... etc. and that they consist of the dead weight g plus .
the live load p. If the surface area of 8ny strip is d &4 so that

I + I
e.g. 44 = dg. ., 21 . i -
™ 5 —L_E_"th-&n d,la;i ﬁﬁﬁ (E +p) and
Wl=ﬁ.wl i HE= Wl+d'ﬂ2 " lﬁr3 =W2+d\’|'§ «s = 86A

If we draw through O parallels to the tangents of the mperi-
dian curve at 1, 2, 3 ... étc., the curve passing through the points
of intersection of these parallels with the horizontals through W gi-
ves the values of the total horizontal thrust 3 , where H = 2n=E,
in the different sections of the shell,

This curve can be directly used for determining the meridian and
Ting forces in the following manner :
The meridian forces can be determined according to eguation a
from the relation :
W S

H? = =
2n r sing am

and the ring forees, according to eguation b , from the relation :

A(Ez) 1 A
Ry = B

1t has to be noted that H'P is always.compression while I\Té is
compression so long a8 F increases ( i.e. A ¥ is ocutside the curve )
and tension when F decreases ( i.e. & # is inside the curve ).

In doxes with vertical tangent at their foot, the horizontal
thrust there is equal to zero and vertical reactions only are created
at the supperts so that no tension Ting is required.

- Apolication to Popular Reinforced Concrete Surfaces of Revolution

E

a) Spherical She 1lls

The relaticn between a,
T and y is given by :(Fig.XTI- of
‘n...'|

2 2
_ & ]
a = -_.5-_53; < . 5
The surface area of a Fo Bge)
spherical shell is :
& BTEY Pig. ITT-16
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i.e. it is equal to the surface area of a cylinder having the same Ta-
divs a and height 7.
Internal forces and Reactions due to Dead Load p_.-"mE Surface

The dead weight of a shell-height y, and included in & central
angle ¢ is given by :

W = BA =g.21n a y

P
but
r = a ging and F=a{ l- cosy)
then 2
W = B-.2n a° (1-cos¢)
The horizontal t']r::'uut H is given by :
= ¥ L Cos¥ - &
2 Z T r tany EEI-rcms.p_Ea a + z
The meridian force ﬂ,p can be galculated from the relation ,
2
_ 5 a " d
N = cosy BT icosy “ B T4z
at crown v= 0 , cosyY = 1 and 2 = a, then
B, = B = g5 compression
at the foot of half spherical ghells, where
¢ = 90° , cose = O and z =0, we get
Ep =g a {(comp.) and H=0
The ring force HE is given by 1@
2
- 0 1 _ a
N, __gﬂ_l_ga[custp- m}—.gfz—a_km}
at exrowmyp= 0 , cosPy= 1 and 2 = a 4 then
§N, = B =g = compression
at foot of half spherical shells, W& have
HQ = 0 at ¢ = 51T 49° and z = D.8l1lBa
or at y = 0.382 a .and r = 0.78%7a

Introducing ¥ = 51° 49' or =z = 0.61Ba in the eguation of H, we get
the magnitude of the maximum horizontal thrust: ‘thus
Hony = 0.382 g a

i.e. the maximum total horizontal thrust :fm:: =2 ¥ E!m:: iz thera-
fore given by
?Em =207 x0.787 ax 0.3B2.ga =0C.3(2r aEg]

i.e. the maxrimum total horizontal thrust of a spherical shell is egu-
al to 0.3 the totel dead weights on half the sphere.
The meridian and ring forces of spherical shells subject to dead
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loads gfme -surface can accordingly be expressed in the form shown ir

figure III-17).

Internal Forces and Reactions due to Live Load Eng Borizontal
2

Total load Ttp = pmun rE =P K . a*. aiu‘?w
The hori B Yo - oL L S——
be horizental thrust o -mp pa op—

. H
The meridian force R, = cosy = pa/2 = copstant

i.e. tThe meridian forces due top are constant in the shell. This
8trilking result cen alsc be proved in the following manner :

The general equation a gives Vo= HEy.2% rging
But 2
"q: = pmRT and Tr=asing
So that 2
B = p a/2 = constant

By =% T Bing

" H )
The ring farce Hﬂ = “’EL‘)' ar

o= BREEEEE L R (2:2..3
atcrown =z =a and an = H&“— rPa/2 compression
&t foot of half -apheriecal shells = s z =0

and Hlil' = - Pa/2 +tepsion
The ring force HB = 0 where 2 :E = nE or 2z = 0.70%7a
This result Corresponds to ¢ = 45° i.e. r =2z = 0.707 &

Introducing this welue inﬁuequatiunnrﬂ,remthumi#udanr



H , thus

max.
H = pzf2 = 0.3535p a
and the meximum total horizontal thrust "I = 2 r Hm iz therefore
given by : '}E satic: ™ 2n x 0.707 a x 0.3535 p a.
Or
plm® horiz.
it kL 1 4 B3 1 1 [ 1°
i
i
B
|
# i
Yoy 7 :

Compm. -, JTamsron +
Fig, XIT-18 Pigs ¥IT-19

which means that the maximum total horizontal thrust of a Epherical
8hell is equal to half the total live loads on half the sphers.

The meridian and ring forces can accordingly be illustrated awu
shown in figure XII-18

Lantern .Lna.d.

Most domes are not closed at the vertex but bave a skylight, or
a ventilation opening, covered by a superstructure, the lantern., Assu-
ma its weight is P t/m' acting on the upper edge of the shall as a
vertical line load. Since the shell can resist only tangential forces,
this edge aleo needs & Btiffening that resists the other compoment -
P coty, — and gets a compressive force from it (Fig. XII-19 ) . The
internal forces are for this case given by :

Ny =—'|'i"prTL r sing - in which
ille= ET':rﬂPzaﬂ a.E:i.n*-.pﬂP and. r = a 8iny
S0 that
2 ; 2y
H'-P ==-2%® asging, F/ 2 T asin"y == F giny, / sin com -
pression
, can be directly calculated from equation @', <thus
R-F“‘HE. .—-Prﬂ'. = O or HE,,:-H.,;.J..H.
HE = + F siny_ / Ei_uqu
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b) Comical Shells

The surface area of & eonical shell

fig. III-20: is given by : S 3
A= 2nr r g/2 but df
= ¥y cobtwy and 8 =y5 / s8iny

then _

A=nn 32 COB ,-'."Binan.p

The meridia.u_ force Hg 1is given according
to equation a by :

H = w.P 3 = b3
8 e® rsing 2ny cosy
g 0
The ring force N, is given according to Eig, XIT-20
equation c¢" by i
. . 8 cos Y
HE =Py T, in which r"?:rrtruinlﬂ or
cog V¥
H, = p_ 7
8 = Bin™y

internal Forces due to Dead Load Egma Surface

The dead weight of a cone, height y , and included in a central
angle @ is given by
Wy =g 4 = 3'2 coB 1.1.12
y =854 = gn o8y / sin%y

The meridian force N, iz therefore given b:r -

" Wig _ T cosy sinEw
8 2Ny coB® - 2 Yooss e

N, = —E—E— compréssion
g 2 8in%p

The ring force L, can be determined from the Eiven general equation if
we replace P. by g cos ¢ ; hence

%_:gcnsprﬁa*srmtenp or
B, =g IE,H:r always compression

Internal Forses due to Live Load Egma Horizontal

The live lcad ::r,-"m2 horizontal cnr:-espunﬁs o p cosE9 per meter sau
are suxface, so that we can determine B, and §Npif we replace E byp
SOS¥ in the previous egquations, so0 that -
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D cogw
Wy = =% L s and

2 sin™y
3
CoE" P
= P F = ees—
L% 8in ¢

5 — Iables of Membrane Forces in Popular Shells of Hewvolution

Alf Pfluger gives in his book "Elementary Staties of Shells" the
membrane forces in soms popular forms of shells under the effact of
different cases of loading, We give in the following tables a choice
of these cases :

%+ — Edze Forces and Transition Curves

It has been shown that tioe upper zones of domes are subject +to
compressive ring forces, while the lower zonmes are subject to tensile
Ting forces, In case the dome, or cone, does not end with a wertical
tangent, the horizontal thrust H must bhe Tesistved by a tension ring
(Pig. XII-21a).

Oz the other hand, the meridian forces in domes and conical roofs
due teo wvertical dead and live loads are always comprassive giving rela-
tively low stresses,

In conical shells and flat spherical domes, bending moments will
be developed due to the big difference between the high tensile stres-
ses in the foot ring and the compressive stregses or low tensile stres-—
sS85 1n the adjacent zones of the shell® The bigger the difference in
the strains between the ring and the adjacent zone, the higher will be
the bending moments. The shape and magnitude of the bending moments at

a- Ring beam b—- Transi-—
tion curve

Edge maments

Pie, XTI-21 Fig, XII-22

¥ Refer to text books on shells such as :
Flugge "Stresses in shells" published by Springer — Verlag, New-York
Ramaswamy " Design and Construction of Conerete Shell Heofs " Publi-

shed by le Graw-Hill book company. .
Markus :"Theorie und Berechnung Rotationssjmmetrischer Bauwerke Pu-
blished by Werner- Verlag- Dusseldorf.
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the foot-ring can be estinated according to the values given in Fig.

EII-22.

48 the bending aoments are due te the sudden change from high
tensile stresses in the foot-ring to low tensile siresses or even
coxpressive stresses in the shell, they can Ve avoided if the shape
of the meridian is changed in a ccnvenient zanner. This change can
be done by a transition curve (Fig. XII-21b) which, when well chosen
gives a relief to the stresses at the foot-ring. It is recommended
To make the change of the stresses gradual from foot-ring to shell.

In order to decrease the stresses due to the forces at the foot
ring, it is recomrended to increase the thiclkness of the shell in

the region of the transition curve.

5 = fxamples:
Figure XIi-23 shows a project of a2 covered circular gymnasiunm,

50 ms diameter. The upper part of the roof is covered by a flat dome

20 mes diameter, 1.4 nms high, and 10 ecms thieck. It is provided with a

central lantern 1.5 ms diameter and supported at its lower edge on
95 posts 1.0 m center to center., The dome is Dounded by two circul-
ar rings, one compression ring at the upper edge below the lantern,

and the other tensiop ring at the lower edge over the posts. The up—
paq-dame is supported by a truncated cone, 4.5 ms high, 10 cms thick
and having a diameter of 30 ms at 1ts upper edge and of 50 ms at its
lower edge. This cone is again provided with two ring beams, one at

the upper edge to resist the compression forces created from the lo-
ads of the upper dome, &nd cne at the lower edge to resist the tens-
ile forces created from the horizontal thrust of the cone. The lower

ring beam is again here supported on 72 vertical posts 2.0 ms cen—

ter to center.

The three main parts of the roof, the lantern, the upper dome ,
and the lower cone, are supported on the posts shorm ‘“in order to gi-
ve the reguired architectural effect, to support the windows necessa-
ary for lighting and to allow for the free lateral movement of their

lower edge.
The meridian and ring forces in both upper dome and lower cone

are compressive znd relatively low so that a thickness of 10 cms is
anple. The thickness of the shell roof is gradually increased to 15
cems over & length of 1.20 ms in order to resist the edge moments

gue to the loeczl shear.
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The shell is reinforced by one mesh 5 @ B mm in eack #Airection
except Bt the edges where two Zeshes are assential.

The reinforcements reguired in the foot-rings of the upper dome
and the lower cone ave high because both dome and cone are relasive-
1y flat.

Pigute XIT-24a gives an alternative solution for the same proj-
ect in whieh the upper truncated cone of the roof with its lantern
are supported on the free edge of the upper cantilever of the main
gtands. The detalils of the cone and the main frames of the stand are
shown in Pig. XII-24b. '

.6 ~ Circular beams

Cirecular beams loaded and supported normal to their plane (fig.
XI1-25) are dealt with in detail in textbooks on theory of elastici-
ty" . We give in the following the fundamental equations reguired to
determine the internal Yorces in a eircular beam over n supports and
subjected to a uniform load p/m.

L i r
1|H||HIIHIHIIHIIHIII]I[H‘HI

LT |
Fig. II-25
The equations of eguilibrium governing the relation between the
.load p, the shearing force @, the bending moment M and the torsional
mement M, acting or an element ds enclosing a central esngle dgof a
circular beam having a radius r are as follows:

Refer for exanple to:
Eurt Beyer " Statik in Stahlbetonbau " , published by : Springer-
Verlag , Berlin.
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g0 that

-g-;"l & but ds = r 4w
&m R - T —— - (a) further
am — i, My
= F . - @ =0 &5 r = const. then — | BT B
<) Yo Q = 0 substituting ds = r d¢ we get
as r ~ %= - ge
%% + M, =Qr {b)

of the moment ¥ aloog ds in the radial directi-

The component
the difference of the torsional moments along the

on must be egual to
same element, thus

ﬂﬂt = Mday = — or
= PP (e)
which means that the torsional moment is maximum at point of szero
bending moments. :
Differentiating egquation (b) with respect to L - we get
2
cu Yy _0r .28 o
Ay dy dy ds
2
AN + y - pr® (d)
dy
The solution of this differential eguation is biven by :
= (e)

M = Asiny + Bocos¥y =Dp7T

The integration constants A4 and E can be determined from the con-

ditions at the supports.
The torsional momeant M, can hejdltermi.uad according to equation ( ¢ )

from the relation
v, = [u av (£)
The internal forces are in this manner statically indeterminate.

In many cases, they can be determined from the conditions of equili-
brium alone bacause the statically indeterminate values . are either

known or egual to Zero.
We give in the following the internal forces for some cases of
gircular beams.



i} Circular Beam Subject to Uniform Losd p and Supported Symmetrically

on__n_ Supports.

The solution of egquation (e) is given in the following relaticns:
- T

2w, = =% and ¢, = —/
Heaction R = “—an

Max. shearing force to the right or left of any support :

T

The bending moment M, the torsional moment M, and the shearing force
Q@ in any section at an angle ¥ from the center line between two suc-
cessive supports, are given by @

2 & coB ¥
w2 Cpgme, ~ 212

2 18
ﬁt::-rpfnumpﬂ'*?]

@ ==r pe _
We give in the following table, the reactions, the maximum shea-
ring forces, bending moments and torsicnal momente in a circular beam

of radiuws r supported symmetrically on n supports and subject to
a total, uniformly distributed, load P.

.P =2N ©rp
|.F Nenl Load s Max. Max, Bending Moment Max. 8 ;—:—i;
' of each Sheating! .+ o.1. | over G.L. ITorsional ngagulaf&
Cols. | Column Force of span |of columns Moment nEx, M,
n v - M (+) M (=) My Degree
i B/i p/e  |.0176 Pr [.,0055 Pr [.0053 P ¢ | 19 21
& P/6 'Pr12 |.0075 Fr |,01u8 P r .|.0015 P r 12 a4t
B /8 pP/16 |.oo42 P r |.0083 P r |.0006 P 1 g 33
12 B/12 P/24 |.0019 P r (.0037 Pr |.0002 P r & 211

b):Cantilever Circular Beam Symnetrically Loaded. Fig. XII-2

Iue to symmetry, the shearing force Q and the torsional moment M,
= 271 -



at c are ‘egual to zero, thus :

Qr:. = 0 and H'l:r:- = 0
For a single conceatrated load
P acting atv ¢

Heactions :

P £ i £
EI = = rl and RE = (1 + ) }
Bending moment at ¢

FPb ar
TR B ol &l

For two eaqusl concentrated loads

P acting at ¢ and e'

P o _ n
By wows KK and Bg =P (1 +3)

¥, = PR (LR -5

For & uniform load v/m on gircular

part B B?

y g
Ry == P Tw, -T- anﬂHnnpr'-Pﬂ{1+ Tj

uc=phr[m¢{1-f—_%}- £ ]

in which & = distance of center of gravity of arch from B B

and 8 = ( sinw _-w_ cose ) ':,—
o

e) Totel Fixed Cantilever Circular Eeam S etrically Loaded
Fig. XII-27

Due to symmetry Q, = © and M., = ©
This beam is once statically indeterminate ,
the statically indeterminate wvalue N, can be
determined as follows 1@
2 g

Hc__ =-—ﬂ—1'—- in which

Yo
e 2T DI (4, ecosy = My sine ) av

and
- -



a a ° 2 2
3 - T y { coe™p 43 ein P) dy =

E[E {H+1}¢u-{ﬂ—l}5:i.nzlpg]
for half a circle tpD-—E— a.nd.{.ll-*%(l-tl_]inﬂich

E = modulus of elasticity

: E
G = modulus of rigid.it:r':——lu
2 (1+Z)

%- poisson ratio -:%' ,l % i.e.
'E‘ = Elq' b}

- : t
IJ_= moment of inertia about y -= y = ——

(£ig. XII-28). Pig, XII-28
I'= torsion modulus
For a rectangular section with E- =n>1 II =10y bt
In the following teble, the values of Y are given as a factor of n =
t P
b .

n 1 1.5 2 3 4 = ] 8 10 o

¢ [©.180 | 0.196)|0.229 | 0.263|0.281 | 0.298 0.307 |0.312 | 0,333

1 l
t b° b 1
Therefore W = 2.4 . —% = - s8nd can be extracted from
12 ty b 5 :

the following table 1

n 1 1.5 2 3 4 & B 10 o«

% |1.425 | 1.020(0.875 | 0.760/0.711 | 0.670 | 0.651 | 0.640 | 0.600




P
“a"ﬁr‘i“*u'“.;“““’n

- P
H_E_Er(l—nﬂnﬁn}-!eﬂﬂinwn

For & unifo lo m'
o+ 1 & W o
B i m{ﬂnnwg—ing- quﬂﬂa¢a+ﬂiﬂ21"2
o ;
e}

ol T
M :—prefl-nﬂs ¥, )+ M cose

2 .
K, =px°. {-qc-sinwnj-ucad.nwﬂ

If the beam is a fixed cantilever half circle, -we get :

-

For & single concentrated load P at ¢ :

g o« BZE wai BE o= B2 0By

2
H'G EP“._ {4—“]:‘:‘-2?“‘ P T
_ 2
Ea == p I
thanpre [%*:—:)-ﬂ.jpr‘a
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III-4 CYLINDRICAL SHELIS

1- Introduction

4 eylindrical shell is gener=ted by zoving a straight line "gen-
erator" along a curve "profile or basic curve" while Jaintaining it
parallel to its original direction.

Cylindrical shells of horizomtal axis are used in engineering
practice either as tube-like closed structures (Fig. XIT-29%a), as bar-

rel-like open structures (Fig. XII-29b) or of the saw-tooth form
(Pig. XIT-30). They may be "lomg" if their span (distance between

Edgs Leam

: 7 <8

i ’ ]
£ " ¢,
| :
i
a) Tube-like shall b) Barrel-vault shell
Big. XII-29
£, Tram
4

Fig. ¥II-30 Saw=tooth shell

diaphragns) is /big relative to its breadth b (distance between edge
beams) , Fig. XII-29 and 30, or short if their span f.is gaall rela-
+ive to their breadth b (Fiz. XII-31).

In the plane of the supports, norzmal to the generators, such
shells oust be provided with end diaphragas in the fora of discs,
plates, arches, trusses, or frames to resist the central shear of the
shell.
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i

Fig. XII-31 & short shell

2= The lienbrane Theory

The neabrane theory may be used for deterninimg the internal for-
ces in cylindrical shells. In the anelysis according to this theory ,
ooaents, torsion, and transverse shear forces are neglected while con-
sidering the eguilibrium with pormal forces and shear forces in +the
plane of the shell only.

In cylindriczl shells, generators and profiles sug-est themselves
as a patural net of coordinate lines. We choose an arbitrary profile
as the datum line and from this measure the coordinate x along the
generators, positive in one direction and negative in the other ; The
second coordinate must vary from gensrator to generator.’ In analogy to
the angle @ used on surfaces of revolution, we introduce here the ang-
le ¢ which a tangent to the profile makes with a horizontal plané

L l

I
= : i
) ; [ ol

£ e

Fig. X1I-32

We consider m:aw- the conditicons.of eguilibriuz of a cylindrical
sghell, For +this purpose, we cut from it an element bounded by two adj-
acent geperators ¢ and @ + d@ and by two adjacent profiles x and x+dx
(Fig. XII-=32). The meabrane forces which act on the four edges must
all lie in tangentizl planes to the ziddle surface and may be resolved

into normal and snear codponents as shown.
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The internal forces per unit length of section are K, , Ng {nor-
mal foreces) znd L HR'PJl { shearing forces). The load per unit area of
shell element nas the couponents P 4 Py in the directions of increas-
ing x and ¥ , respectively, and a radial (norazl) coaponent D, Dositi-

e upward.

y,,.%-i“ o'
Mo

..far

The stress resultants N_ , Ly, H}:cpﬂan be deterzined froz three
conditions of equilibriur. These conditions may easily be read {from
figure XIT-33., For tone equilibrium normal to the middle surface we ha-—
ve , besides the external forces P = dx . r dgp , only the resultant

of the two forces I-I.-_F.ﬂ::c, pointing inwards. Thus:

H.q: - dx - d’tp‘ - PI’ - dI s I ﬂ.? = G {1:}

For the forces parallel to a tangent to the profile, we have '

ol oNR
i e =

T dqb.d:+.hx.dx.rd¢+p¢.ﬂx.rdtp-ﬂ (2)
The eguilibrium in the x—-direction yields the equation
on hH'-‘P .

o’ X . =
_—ﬁ-};— d}: PR e ﬁ{\P - ?ﬂ}- d* s O +. Px « dx e I ﬂ.‘* e= ) {j}

Dividing by the two differentials, we get the following differential
equations for the mesbrane forecegs 1n the shell:

ﬂq;,.: Pp - T (&)
N on
x@ 1 1] :
%% - "R F 3 2
?H. N .
1 A B ¢ xP =

In order to calculate H,p - x“F= EEPI = Nx’ we Prc:n:med ‘as Tollows:

- 277 =



1) First, we deterzine He according to equation. 4. This "hoop force"
depends only on the local intensity of the normal load P, and cannot
be influenced by tae boundary conditions. This ie not of great impor-
Llance for shells whose profiles are closed curves -and which have tweo
rrofiles as boundaries, ©.E+, the shell shown in figure XII-29a. But
for shells as that shown in figure XII-29b, the impossibility of pre-
scribing arbitrary values of ¥ at the straight edzes leads to the
crucial point in the membrane theory of cylindrical shells,

2) For the detercination of the shearing forces Hh.b =N ox ' We integ-
Tate equation 5 with respect to x and get an integration constant Gl.
3) In order to determine the normal force H .y we integrate equation &
with respect to x and get a new integration function Cs.

The integration functions Gi and C, do not permit any boundary
conditions; so that the problem of cylindrical shells can only be sol-
ved under some special supporting conditions as shown in the following
special cases,

Special Cases

Iz the specisl case Py =0 the internsal farces can be
given in the form : '
1) K, = BT (%)

di
1
2) Hﬂ=ﬂw:'_=—|:p‘p+5 a—%—-}‘.‘:i-—'zl (w)
dan

The ?ﬂll.lﬂ:q’ +-rl- H‘Fiisﬂfunutiun of yand if we call it F {(v)

we shall hawve
Fpp,=F8,, =- X F(e) + ¢, (w (7)

xy
L oo -z M o | (8)
3 R mas g ~F T 2
In the following, we are going to limit our discussion +o shells

stiffened at both ends by diaphragms which can resist foreces acting
in their plane only, and symmetrically locaded with respect to the mid-—

dle cross-sectidn. In such cases, we have ;

atx =0 F:¢=D and EJ_Q;,-_; == 0
2 A
1 < dF (v
EtI:F HI =0 and . Ez(q} _El? T.FL

Introducing these velues in the previous egquations &, 7 & 8,
we get fipally : Rg = p. r
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HI'*P =N1.FI == XF(y¢) (9)

1 2 da
Ny =-ﬁ{l _4‘:2}_3_(%2&

It is clear from these formulae that the shearing force H and -

the longitudinal normal-force N_ vary in the direction of the Eenera-
tors according to the same pa'h:e:-n as in the case of a simple beam of
span | loaded by & uniformly distributed load as shown in fig, ITI-34,

| - ¢
7T TN

/e L /¥

IIIFIIH!IIIIIIIIIIerIIIIIIHIIJHIII'IIIII'IIIHIIIIIIIIIIIIIFIFIIHJJIIFIIIIIIFI!IHJIIIIIIIiIé'

LTI

T e

Pig, XIT-38

0f coarse, the distribution of the forces wa and N over the cross
section camnot be derived from the beam formulas but is governed by

equation 1 for the eguilibrium of the shell element.
inother case of boundary conditions is represented by £ig.IIT-35.

Here one end, x =1, of
the shell is completely
built in, i.e., the sup-
port afF this side ecan
resist not only shearing
farces qu, but also
normal forces N, - The
other end, x = O,may then
be left without any sup -
port at all, and we have

'bh& hnu.n.-:i:-;r conditions :
d e ) FIG, T1l-

Frp =0 - | !
E:-n-u“_ and Hx A i A ..||III|H|!Hir

Equn.tinns '? and B show
that in this case -:‘:l.{w 3
-and C, (%) must be zero. and hence we have

_z?g...-

il
i
|.|. ||‘




N, =- xF(%) HI=% e (10)

This shell is supported like a cantilever beam, and, again +he
span wise distribution of NI-I.F and Hx are these of the shaar and the
bending moment cf the beam analogue..

The three-dimensional support of such a cantilever shell will
Eas.rcaly be accomplished by a solid wall, as shown in fisura XI1-35,
but rather by an adjoining span of the same shell (fig. XTI-35).

¥
E F I ﬂ
L
o ol e & |
M
X
FIG, XII-36
T

In such a structure, we have again two disphragms of the wusual type
which resist only shearing forces but do not accept farces I'II from the
shell. The forces N, coming from the cantilever section must therefore
be transmitted across the diaphragm to the adjoining bay of the shell
which therefore has the boundary cooditiocns

2 .
i
=0 i N = L ﬂF]EI
x 4. T dyg
1112 Hxnﬂ'

When we determine cl (g ) and ':E {v) from these conditions, we get:

2 2
T-El 2 ) . Fle)
N = = -x) . F
xy ¢ - o (11)
IE LE )
g 2l _(x*- x1* 2 (®yamw |
- - 2T tE  dw
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Again here H& and Hx have the same distributiot as the shearins
force and the bending moment of & beam with owverhanzing cantilever,¥his
coincidepnce will also bte found if another cantilever shell is added at
the other end of the main span, but the analogy cannot be extended %o
statically indeterminate cases as, for example, that of a two span con-
tinuous ecylindrical shell between three diaphragms. EHere the result
will be influenced by -the defermation of the shell which is different
from that uf & simple bean.

In all the preceeding cases, H'F is found from eguetion 1 which
1:! not affected by the choice of the boundary conditions.

The Cireunlsr Cylindrical Shell

hA.) Tube-Like Shells

It will be assumed here that the radius of the middle surface is
equal to " a " i.e. r = A and
that the circuler edges of the shell are stiffened by diaphragms capa-
ble of resisting forces in their plane only. The luadﬂ are symmetrical
with respect to the middle axis.

The internal forces can be calculated according to equations 9
from the relations.

F = Py &

HI’PE N'FxE-I.F{lP:] L {12}

2 2
1 & ar ()
ﬂ:na—ﬂ I:l —--l'-l- :I -

Examples
1.) Circuilsr Cylindrical Shell I.ocaded its own Weight

Assuming that the dead weight per square meter surface = g ; then
the surface load components are : )

Py =8 siny _Eﬂﬂ Py == E 005 ¥

The first of egquations 12 is therefore given by

N, =-— .6 & cosy (13a)

The function P (% ) and its derivative are :
il
& L % L goging 4 &
F{tp}-pw-arraw__gs:m?-ra-Eﬂsinlangsiunr and

- 281 -



%—F:Egcu&tﬁ

accordingly we get

Etp = Hq:'.'.': ==2 g x sing {13b)
.
. =EE'EEL - 4 x° ) cesp (13c)

The distribution of
the EsTresses oo the c¢ross
gection is shown in figure ﬂ-'
XI1-37. Opne has to notice '
that N, is linear as 4is ~
generally assumed in ele -
,mentary statics, However |, k /

this statemsnt cannot be
generalized for other shells
and for other cases of loading.
2.3 Circular Cylinder Filled with Liguid

For a pipe filled with liguid of specific weighty , the external
ferces ( the water pressure ) are :

Py ™ P‘F':G ¥ Pr= Py =Yax cosg

Here p, 18 the pressure at the level of the axis of the pipe and may
be anything >y e , but not less.

: :I'# |

— DA

A

[ - E
If we choose the boundsary ¢onditions of fig{:.'re (III-34) we find
at once from eguations 12 the stress resultants : (FPig. XIY¥-38).

2
an' pﬂ a =-Ya cosg

:.:,'E':F‘: I[‘#E= -Ya X sin® 4 (1&)

HI-;-I'?[[E.-,u.zzjncaq:—.

R -



The average pressure P produces only hoop stresses . The 1load
term with v represents the weight of the liguid and produces a kind
of overall bending of the pipe, which acts as a heam carrying .- this
welght between the supports. We have already seen that therefore the
shear. Hx - and the normal force H have the same span wise distribu-
tion as the shear a22d the hendi.ng moment of & beam. The distribution
of W, over tne proflle is incidentially the same linear d.:.st:-i_.hutiu.u
as that of bepding stresses in common beam theory. This result is &
peculiarity of the circular cylinder and, even there, is restricted to

certain simple loads. .

B.) Barrel Vaults

1) BSemicircular Simple Barrel Vault Loaded by its own Weight

As an introduction to the theory of barrel vaults., we are going
to discuss the stress distribution of the internal forces, given by
eguations 13, in the cirecular cylindrical shell subjected to its own
welght treated in example 1 and shown in figure ITI-37-

The most remarkable feature of this force system 1is that on the
generators at midheight, o=+ T/2 we have Ky = o . If we cut away
the lower half of the shell, the upper balf need not be supported at
the nm*lght edges and may carry its weight freely between the diam-
pPhragms, just as the tubular shells do. Such barrel vaults have been

nsed as roof structures.

However, the straight edges of a barrel vault. are not comple-

1:313 free of extermal forces. There is a shear H =+ 2 Bx s 8nd a
structural element must be provided to which it r.'.a.n be transmitted .
This so called " edge beam " is a straight member, and if properly
placed, it is stressed only in -
tension (fig. XII-39). Its
axial tensile force T is of
coarse variable along the span
It can aas.u.y ‘he :‘nuncl by in-— e
tegrating the shear N_ 9 be = 4o
gioning at the end x = :__1- where
T =0 . For the edge w= + TL,.-"E
the-: intusrat:l.un gives . "
'I'=J'I-. dx'z-EEI::sintpﬂI=—EEIIﬂI=lE|:T--*4

-l /2 =ls2-. =L/ 2 '
and at the other end, we get a similar result.
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The statical necessity of this force may be understood from a

look at the, Ny diagram in fig. XII-#0 which shows the stress resultants
of a barrel wvault with semicircular profile.

i

y v P
FIG, X11-40 '

The section has only longitudinal compressive farces N, and if we
cut the shell apart in a plane x = constant, the horizontal equili -
brium of each half reqguires that tensile forces of the same ﬂ.muun;!:
alsc appear. Now the integral of the forces ‘HI in the cross-section

b m
¥ ;Ej'ﬂladwz—%-g(tz-ﬂ-zg] - fzfqnﬂ?dwz—%-gfté—ﬂrxz}
- mf2 : - mjav-
This is exactly the same compressive force as the two tensile forces
T in the edge beams so that they maintain the horizontal equilibrium,

The resultant of the compressive forces lies somewhere in the
semi-circular profile and higher than the tensile force 2T and both
combine to form a couple equal to the externs]l moment. When we consi-
der the barrel vault as a beam of span!| . Since the load of the "beam"

per unit length isn a g , its bending moment is
2 2 -
Henagif(! = 44X 3)/mB

The momant of the stress resultents I'T,I and T in the eross -

section can be determined by taking moments about the lower horizon.
tal diameter which is at the same time the line of action of the ten-
sion T. Hepce :

+ W2 + /2 = 2 2
JH:.ﬂ.nbs!F'.aﬂ.'-Fm J -

€ —g X ) cosw . alde
- .2
hee "U2 amag(l -ax )8
wnich is exactly equal to M. In the sane way .check that the vertical
resultant of the shearing forces H ., in the cross-section is equal
to the transverse shearing force.-n a gx of the beam analogue.
This comparison between the barrel vault and its beam analogue

Bives a good general idea of the stress system in the shell and yields

|

¥
o
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& useful check for the computations. It camnot disclose details of the
membrane stress distribution, since they depend essentially on the sha-

Pe of the shell.

2, } Semicircular Simple- Barrel ‘I-“ag;t Loaded bv a Vertical I.;ﬂ Load

p £ / m° horizontal

The load components are in this case given by :
2

pl.p" P siny comsw Fp = = P cos™y

Substituting these values in equations 12, we get : (fig.XII-41)

Hp==-pa cnﬂE:p

H‘FEH'-F.'E =-%pIEinE'iP
& &
i B e = ) cos2e¢
Nx e H{ L

P

- o ) s |

1 : i
| J"T;
I L
4
-— L.
1
'\"5.. f.f" \‘:\ :
E P,

It is interesting to observe that at the shell edges  where
$=+ T J/2  Hoth Ny and H g = me equal zero. Comsequently, in

this 1uﬂ.ﬂ.ing case, the shell need no support at its longitudinal edges,
In order to make a shell suitable for the construction of free-

Epanning barrel vaults, the force K, must be zero at the straight ed-

ges+  This is alweye possible for =hell profiles subject to wertical

loads and terminating with vertical tangents. Accordingly, the semi -
circular, elliptical, cycloidal and similar profiles are r:.nnsidered as

convenient forms for freespanning barrel ‘?aults.

As an egample, we give in the following, the stress resultants
in a eycloidal barrel shell loaded by dead and superimposed loads act-

ing per square meter surface.
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The Cyocloidel Barrel Shell.

The eguaticn of the e¢cycloid
( fig. XII-42 ) is given by the
formulas
v=a (2¥+ sin2y ),- z=a(l+cos2y)
The radius of curvature is there-

fore ;

r =4 & cogy
Thus :

In case of own weizht { fig, XIT-—43 )

By = g sinw Pp = = E cosy

Hlp-—ll-gl.cnaa;p

Feg= Royx =~ 3 g x siny /—T\%’r
1 e

-
R o ;
- EEE{L :l’.a] | e - ..ﬁ';. L

= constant FIG, X11-83

Here the force N, is constant over the whole profile. This may
sometimes be desirable since it indicates that all material is effi -
ciently used. Bub in most cases we should rather like to have a tensi-
le force I, along the edge to avoid large differences between the
length wise strain in the shell and in its edge member.

The Wiedemann's Barrel Shell
It is however possible %o improve the properties of the cycloidal
shell by using the Wiedemann's profile which is given by the equatiba.

r=nﬂ+nlnonlﬂ

This curve can be originated by rolling a circle on the outside of
a cycloid as shown in figure XII-44 . The Wiedemann's curve is the 1o-
cus of the center point of the circle. We find the ordinates y and
z in the plane of a profile by simple integration of the projections
of the line element r 4v : thus

g
v = Ircns-p dy =&, siny + % alL'E'-P + 5in29¢ )
o

- 286 =



? :
1
z g_.-I_r sing dv = a, coBy + & & : y

n/2 - { 1 + coB2¢ ) 1
These relations show that the curve
lie somewhere between .the circle
(&, =0 ) and a cycloid (s, = o )
But this does not mean that the
stresses lie halfway between the

two cases. The stress resultants are = T Tl
‘accordlingly 1 ]
For the own weight Egn‘a ﬂurfm_:e

Pp= £ Blny P == E cos¥

H,,:-g-r:-an + 8y cos Y ) cosy .
2 aq.-r - 51 coa g

B.u +* ll cos F

HH = va-. £ x ainwy

K, e & (1% = 4 :'I:Z;.EE e, + 3 a, coayp )(nnu} coSP)cosy ~a, &, since
(a, +a; cos ¢ )7

at the lower edge where ¢ = + 1 /2

& 2 2

= = o = - Ak

H;‘F o, Heg =¥, o 2 Ex and H_ +B—:-%{1 % )
o

For a live load Ena horizontal

Py =P Sing cosy Ppp == P cos’y
‘Hw ==p & a'n + 8y cosv ) cnn%
3a,6 +4a, cosv
Neg=Tpx=-P :s.i:m el B, + a; 605 p

. 2 2 - 2
S :2} (3 &+ 4 ll cos“y) con2y = B, A&y coay [ B=15 cos"¢)

P, 2
B = =(}
il (o, + a8y m-ﬂj

at the lower edge. where =2+ WJj2

2 2
H'F = 0. E:‘: n': 1S = 43x% )

This pemns that at the edges ¢ = + 7/2, tensile N forces of

Hﬁ = 0 -and F:--rﬂﬂ
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reasonable values are developed both for dead weight and vertical 1li-
ve loads, Since tensile forces are also acting on the upper edge of
the straight edge beams, we have +the possibility to eliminate or +o
decrease the difference of elongations by proper choice of the dimen—
sions of the shell.

53— The Beam Theory

We have seen in figures XIT-34, 35 & 36, that the shearing force
Nxm and the longitudinal furc:e‘.lix vary in the direction of the gene-—
rators according to the same pattern as in the case of a simple beam
of span | loaded by a uniformly distributed load. We will discuss now

whether it i= possible to consider the shell as a beam,.

It has been found that the EﬂﬂlIEiE of & shell as a three dimen—
sional problem in & strict sense , is very complicated; but its struc-
tural bebavior can be best understood by comparing its action to that
of an ordinary beam, whose cross-—section is a2 thin curved slab spaning

between the transverse stiffeners™ —the diaphragms-.

The appiication of load on the shell induces Jlongitudinal fiber
stresses similar to those induced in any homogenious beam under load,
anﬁ if the span | is large compared to the transverse chord width b,
the variation of the fiber stresses across any section is the same as
that created in a beam, that is, it is linear from top to bottom.

As the ratio of b to | increases the variation-of the longitudi-
nal force per unit width, ﬂx s changes from straigh; line o curvilin-
ear. The extent of this change is shown in figure XIT-45, in which the
ordinate represents vertical disbtance measured from +the botbom of .a
cylindrical shell in terms z'/f and the absessa indicates magnitud of
Hx - fnrces: For convenience, the curves are drawn for various wvalues
of &/l , the ratio of shell radius to span length s Tather than +the
previosly discussed ratio of b to t. Although the two ratios are in-
dependent, a/l is & more suitable Qarﬂmater sjince it includes the ef-
fect of shell rise as well as chord width, When a/l is less than 0.2,
the variation is almost linear, while for larger values of &/1 the
force at the lower edge is greater than that given by urdinarr beam

thenrr.

# Refer to H. Lundgren " Cylindrical Shells '™ . Published by the
Danish Technical FPress, The institution of Danish Civil Engineers/
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FIG. X1i-45

Although the magnitude of the tensile stresses at the lower edge
of the shell is sometimes quite senstive to variations of a/l , the
total tensile area under these curves does not vary to the same degree
For example, the ratic of bottom fiber stresses for values of a/L of
0.6 and 0.1 is 3.2 while the ratio of tensile areas below the neu-
tral axis for these caset is only l.4. Since the reinfercemeant requi-
red depends essentially on the total tensile area rather than the
maximum fiber stress, the design of a shell is not so sensitive a pro-
blem . Moreover, the curves are prepared for a single shell unrestrai-
ned at the lower edges. When these edges are restrained by adjoining
shells or edge beams, longitudinal stresses conform more closely +to
the straight line variastion. Btudies indicate that the beam method is
appliecable to the following classes of ahélls'pruvided they are uni -
formly lodded : '

1) Single shells without edge beams if a/1 < 0.2 .

2) “Long single shells with not too deep edge beams if a/| < 0.3 .
3) Interior shells of a group of multiple shells with feather edge

beams if a/L < 0.6 .
4) Interior shells of a multiple group of shells with edge beams if
a/L < 0.4 .
However, close agreement with the results of the analytical theo-
Ty have been obtained for ratics of a/| = 0.9 .

The basic assumptions used in the beam theory ars :

1) PFlane sections befeore deformation remain plane after deformation.
2) Form of c¢ross section is not changed i.e. points A and B shown
in figure III-46 deflect the same amount,
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Accordingly :

1) Distribution of N: is
gimilar to O

2) Distribution of N xgi®
similar to T

as shown in figure XII-—47
The analysis of the

normal and shearing forces

in a léng barrel =shell is

Bimilar to that of a bean, i

span L , and having a cur-

ved croas Bectlion as shown

in following simple example, ~

Anelwsis of Be Action of S

A

Y,
¥

f1G6 XM-46 £

trical C

A lang Barrel Skell
3 14

uwlar Cylindrical Shells

1. Froperties of Shell section

a) Shell without edge beams :

The area of cross section of
a symmetrical circular shell of
radius a and subtending & central
angle 2 .  dis given by :

A =2an $o t

The position of the c.g. of the
sectlion can be determined from the
relation =

Eu = A Eiﬂ!ﬂu fﬂ#u

50 that

.ﬂﬂﬂil-%}
Po

Fig. XII-48

IG, X1l-ug

The momen®t of inertia of the section about axis 0-0 passing through the

center O 4ism ¢

I, ,=ta (o, +1/2 sin2 g, )

=}

Hence, The moment of lnertis of the section about axis 1-1 passing thr-

ough. the ¢.g. ia therefore

I,y =te’ (@, +1/2 gin2 ¢, -

2 sinfyp
®

o

The statical moment of the Bection above or below the neutral axia{g_E_J
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axis can be calculated from the relation :

4 ' . L
S, = = £t 73 2 a ( 1+ )
b) Shell with edge beams., ( Fig. XII-49 )
The area of cross-section of : ;
the shell is given by : £ :
_ . il : SR 3
A=2(eg t+Db d) —4 - el & :
—
The statical moment of the __H_{.
section of the shell about axis 'x i /‘; z
o—0 is : - £l £ g
¥ - E -
S, _:.,E{ta sin-.;pg -|-hgd 512) a 8
where =
Eb = & COS.fp, = % A1)

The position of the c.g. can be determined from the relation :

=1;| EE-_ :.-I".l. ise. m = E—En

The angle ¢ is therefore given by : cos $ =2, /a and the statical
moment 5, , about axis passing through the c,g. will e +the same
as in previous case,

The moments of inertia about axes o—o and 1-1 are given by

b_a”
¥ —
Iu—n"l}t{"%"’lfasmz‘l?g}"’("E_"'Ebnﬂ' 2y 2
a : ke
Tia1 = Too - 4.2,
2a nte F eg in t all
Load

Total load per meter run shell is given by :

P = 2a Po P for a circular shell without edge beans,

" L1 L1 LIS with 1] L 1]

total vertical load, including own weight, per BEguare meter shell

load of edge beam per meter.
The dead weight of the shell slab may practically always be
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considered unifermly distributed even in cases where light stiffening
ribs are provided.

Since the greater part of the shell has only light reinforcement
the weight per cubic meter slab may be assumed = 2,40 t .

On the other hand, for long shells, the edge beams are so hea-
vily reinforced that in computing the weight due regard has to be Ci-
ven to the reinforcement,

As regarde the live loads, one may follow the following rules:
1) For ordinary long shells where the exact distribution of load is less
important, an average live load of &5 kg;m; is mssumed for +the entire
shell surface, provided that the maximum slope does not differ much
from 40° .,

Z) For other shells, where the discrease of the load by increasing in-
elination is of importance, a leoad of ~ 100 Biﬂ;! kgfm? of shell sur-
face mey be assumed.

3) For parallel shells, the valleys between the individual =shells are
to be considered half filled with snow having a unit weight of 150
kgfmj or an equivalent weight of rain water.

4) For the composite shell structure of the ordinary long type, the
additional load from one valley, due to Bnow, rain water or pgutter
plain concrete, may be assumed &s a line load on the edge beam, Thers-
by, the Bnow - or rain water - load on the edge beam will be =

1.5 '
25 b ( £ + Ve - 2.5 ) kg/m where b = width of shell and

f = rise in meters.
ihen using this formula a uniformly distributed snow or live load of
65 kgfm; 18 to be applied to the entire shell éur:aue.

5) The wind load on & cylindrical roof with an inclipatioen of less
than 40° may be assumed as a uniformly distributed suction of ~ 100
kgfma « It reduces the stresses due to dead and Brnow or live loads.

Etresses and Stregs Resultants

For a symmetrically
loaded symetrical sect- E :r
& g

¢ or.

ion as that shown in fig.
XII-50, a long shell
may be considered as =a
beam subject to bending

in the vertical plane FIG. X11-50
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only; hence, the normal stress ¢ in the longitudinal direction is

given by :

The maximum compressive s_tress, o, po— at the upper fiber
must be smaller than the allowable buckling st.r'esa Ubuc:lr_l . Hence

Cc max =M1/ I 5 £ allow, @y 10 where

G
allow, O, .. = ch L L s = factor of safety

O
1 + E c28 !% =

9.p = The bending compressive strength of concrete = ; O o
O.2g = The cube compressive strength of concrete
E = Modulus of elasticity of concrete = 200 000 kg/cm® for mor
mal cases :
8 = Factor of safety = 4 in buckling problems

Assuming Er:EB = 200 ]n::g,.r"-:::m2 y We should have :
a
Yo max £ 65/ (1+-m55)

Thus, for normal cases, the maximum sllowed concrate compressive stress

Uo may ©80 be extracted from the curve shown in figure XIT-51,
g, § mrax
i
A0 L

. .3 ; ‘ 1 . e -
7.2 & 7o o S Fo8 i sP0 ' sro S¥a Far %



The longitudinsl stress resultant Nx is therefore given by :

N =Mz t/I;

x

The total tenmsion T below the neutral axis being equal to the total
compreasion © above the same axis, we get

o= 2= M B :
8w P= —TIJNI d.L:-"I-E‘-—- .Iljt-mﬂ'.ﬂ =—1ﬁ
z=0 1-1 A=Y

=0 -

Therefore, the total temsion T 4in the section is given Ey :

Knowing further that I, , 4 51_1 = ¥oqp = the lever arm between the
center of tension and the center of compression, then

T= M/ Voo

In reinforced con- . - Pfr
erete shells (Fig.XII- {
52), the concrete in i D ]
tension is generally / M A ‘a
neglected and all the { 1
tensile stresses are i :
resisted by tension ste- ;f .= - r}—-—-—
el so that the real yoo ' &
may be assumed egqual to
the distance between the FIG, X11-52
center of the tension
reinfercement and the center of compression which is generally bigger
than 11_1 Fi El-—l ' )

oy
v
~aB7A4
il
Ly

-

For normal dimensions of symmetrical circular cylindrical shclls
where b =8 =12 ms and L= 16 - 25 ms, h may be chosen equal to
1 /10 . In a prelininary estimate h' may be assumed 10-20 cms. and
h" = /5 may be assumed 15-25 ecms., so that ¥,y can be assumed -

equal to h = /10 minus 25 to 40 cms. ¥, may however be assumed
equal to ﬂ:‘ﬂ? h.

The required tension steel in the shell can therefore be give-
en by: : A g = i Ty

This reinforcement is generally arranged in & narrow edge bean as
ghovm in figure XII-5% ; the free space between the bars 1s equal



to their diameter so that if tne teansion rein
forcement is for example 13¢ 25 mm. then h's
Bth = 15¢™ The maximum stress in the tension
stesl G _ max. takes place in the lowest row,
the ave?a.,ge strese II.FE at the center of gra-
vity of the teansion steel is generally smal -
ler. If no exact calculation is done d,. mey
be assumed egual to 0.9 the meximum allowed
Talues.

Assuming t]?at ]'TI‘ denotes the total in-
ternal shearing force per umnit length of the
section then

N, =tt= QB8/ T

in which @ and T are the shearing force and the shearing stress
respectively, & is the statical moment of the section above any pla-
ne-about the c.g. axis. Its distribution is, as stated before, para-
*bolic and attains its maximm wvalues at the diaphrasms where § is ma-
ximm . '
So that :

mAX. N g™ Qpay 5 /-1,

The maximum ordimate .of the shear diagram lies at the axis passing
through the centeér of gravity of the section, hence-:

max. maxs Npo'=-Quax S3.07/ T3 = Qay 7/ Fop
As in ordinary beams this shearing force F, will cause a diag-
m_;'a.l_ tension T_ , resisted by both sides of the shell, and of egual
magnitude, so that each side resists a diagonal force of the magnitude:

ok
TIIP = E q .|"" FET_
All shear stresses T bigger thano the allowed values ( 6-8 b:_gj_r;mzjmust
be resisted either by stirrups or diagonal bars inclined 45° with the
axis. The latter are prefered in cases when T is bigger than 10 kg/

=m2 -

The shear stress I is given by :

T = T:‘,.-"j.

where A is the area of 1 m strip of the shell = 100 @ t c:uE
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Exanple

It is required to amalyse the beam action and to determine the
lopgitudinal and diagonal reinforcemeats for the intermediate long
eylindrical shell roof with edge beams shown in figure XTI-54, :

The shell is simply supported on two edge diaphragms 25ms apart.

F,i - .?'-.-J..l -

Data :

Span L = 25 m, width b = 10 m, total rine h=2.,5n, riee of a.rr: f_LEm
Depth of edge beam d = 1.00 m, breadth 'n = 0.10 m. Thickness of shell

= 0,10 m. L
Radius a can be calculated from the relation 1
a = 52 + (a=-=1.5 ')E or ' a = 9.083 ms.
Loads” _ . ' - 5
Own weight of 10 cms, shell-slab - 0.1 x 2400 = 240 kg/m
Weight of 3 cms fine concrete .03 x 2200 = 66 "
wWeight of plaster + isclation = 34 n
Live load = [=]#] o
total p ="8400 T

% Since each of the 20 cm wide edge beams is common for twn Mh‘ﬂm
beams belonging to one shell are to be introduced with a hr&nﬂtﬁ_‘ho
of 10 cms,
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Own weight of edge bean

Concrete slopes + rain water

total By

sin @, =b/2 a = 10/2 x' 9.083 = 0.5505

ie. @, = $2:% x 3.1416

Total load

ﬁ-.—E..Fn.n.p-l-pb

B

450  kz/m'
= 300 "
= 750 kg/m!
= 33% 2t o w5 4

= 0.583 radians

=2 x 0.583 x 9.083 x 400 + 750 = 5000 kg/m'

Sendings Moments and Shearigg Forces

Maximum external bending moment at mid-span’:

max, M = 5x25° /B8 = 390 m
Maximm sheaxring force at diaphragms :
max. @ = 5x25,/ 2 = B2.5 +tons

Determination of Center of Gravity, Statical Moment and Moment of
Inertis of Section of Shell.

Referring to figure XTI-49 : We get ;

A =
E,. =acos g - % = 9.083 x 0.835 — 0.50
8, .= 2 (t a< sin Wo * Pod Z,) = 2(0.1%9.083°x0,5505+0. 1x1.0x
Zo =8, /4 =10.500 / 1.259
Therefore, the distance of the ¢.E.~ axis (N.A.) from the top Tiber is
given by :

N =a-2z = 0,083 - 8,340

.. 1 3 ==

Innn' a” £ ( W, + 5 Sin .Eq,pﬂ:l' + (1/8 hnr.i + 2 hnd Eh}

2(a gt +bd) =2 (9.085 x 0,583 x 0.1 + 0.1 x 1) = 1.259 n°

= ?-533‘ o 'D-ﬁ: ?.'DE_E: ms

x 7.083) =10,500 m>
= B.340 m

= 0, ?-45 m

= 9.085° x 0.1 (0.58340.5x0.919)+(1/6x0.1x1.0°+2x0." x1.0x7.083% )
=88,180 m"

The moment of inertia of the section about the C.E. axis is

o _ &
Il-l_ I D=0 A %o

= BB.180 - 1.259 x 5.5‘1-02

0.61

£
n

The statical moment of the cross—-sectional area above or below the Cule

axis is given by :
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1=§_tqif_2qa{l+z-a‘l-£)

=% x 0.1 x 0.723)/2 x 0,743 x 9.083 (1 + zyggggs) = 0.365 =

The theoretical lever arm is therefore =
Theoretical Fpp = I, 5 / S, ; = 0.510 /! 0.365 ° = 1,670 n=

Normal stresses and longitudinal reinforcements
Hm concrete streas at top fiber:
max, g, = max. ¥ /I, , = 390 x 0.745/0.61 = 475 t/n° = 475 kg/ca®

For a/t = 9.085/0.1 = 90.85 , the maximm allowed campressive stresas
in concrete according to relations given :.‘.n'ﬂs; ITI-51 is:

« allowed O, = 45 szmE only!
The existing value of 4‘?.5 h,';fmz may be accepted; it means that 'l:he
factor of safety 's? a.ga:l.nst buckling is 3.86 which is sufficient.

The center of compression is assumed at h" = /5 from the upper f£iber
Thus k" =7/5 = 0.743/5 = '15 cms, Whereas, the center of
tension is assumed at the center |_::f gravity of the tension steel which
lies at a distance h' = 20 ems. from the lower Liber of the edge beam. .
The agtual lever arm is therefore given by: -
Actos]l Fm = h - Eh' + h";" = 2o = EU-E + G-J-E-"} = Et5 —3155 = 2.
Assuming yop = 0.87 h, we get Jon = 0.87 x 2.5 g = 2.1
The two values are approximately the same and are about 1.3 times the
theoretical value given befors. Hence: :
The maximus total tension in the section at midspan is:

max. T = max. M / act. Jop = 390 / 2.15 = 180 tons

Using high grade steel with an allowable average stress a, = ﬂ.ﬁ x'2
= l.E tom"ma then the reguired tension ra:!.nrurt:mmh at :liﬂ-spa.n is:

max. &, = max. T / @, plau,fl.ﬂnmnm chosen 20 4 25 mm

L

Shear stresses and reinforcements

The mexdimum total internal shearing foree per unlt length of sec-
tion is given by:

max, N .= max., © t=max.Q / Jop = 62.5 / 2.15 = 29 t/m

The maximun diagonal tension resisted by each side of the shell
iz therefore:

max. TII-P= LFE'M, HIITP= 29;2:14-2 t/m



Hence the masximum shear stress is :
mex. T = max. T /A = 14500/100 x 10 = 14.5 kg/ew®

e
All shear stresses bigger
than the allowed value of B kg/ £ LS IS -
mng ( giving 8 t/m diasgonal ten- ¥ = €7 - X' L -
sion ) will be resisted by dia- : ’ :
‘Bon&l reinforcements in the T //+ __ /

menner shown in figure XIT-55.

. b (*! ]

The ahna.r atress is e?_u c‘:"“‘x ﬂ% ’,i !‘5 515/
o Wy -,

where ¥ = 8 ¥ 12.5/14.5=6.9 m.

Dividing the distance x'=l/2-X =

al to zero at mid-span, it will
2 /
be agual to B kg/em” at & dis-
tance x from the center line

-1-2-5 e E-g = E-E ms . ]Il.'tl'ﬂ fDu.'L"

equal strips, then the area of the disgonal tension reinforcement fe-
guired in each strip is given by :

'.151 - l—‘“—Hﬂx%—:— = 12.83.x1 . 9,95 8413
b, = 12.88311.25 , 5.0 - S 7 13
by = 11.25 + 9.6 x%—:% = 7.45 ex? & & 13
doy = 2 g = x %'_E = 6,30 cn® 5 & 13

The lengths x and X are to be measured at the neutral plane.

Analvsis.of Arch Action of Symmetricel Circular Cylindricel Shells

The characteristic feature of shell action is the transmission
of loads primarily by direct stresses, with relatively scall bending
stresses. This unique property of cylindrical shells stems Ifrom toe
“behavior of the shell in the transverse direction. To form a cleer
picture of the manner in which the shell operates and to contrast it
with the behavieur of a plate, typical strips cut from a plave and =2
shell are shown in figure ITI-35.

Considering the strip of fig. & as & free body, it is evident
that shearing forces and bending moments are reguired in  order to
o
maintain the external load in equilibrium. On the other hand in the
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j} Lxtornal load

Jje-.-;:r ﬁf#‘:.f‘

AL
T * Age
FIG, XII-56 Tranrrerce Force
N

La

strip of fig.b the radial conmponent P of the external load p is resis-
ted by transverse force Ny causing normal stresses on the radial sec-
tions, whereas the tangential component F, is resisted by shearing
forces on the transverse sections. The presence of these shearing for-
ces distinguishes shell action from arch action. Because of them the
shell, regaerdless of its shape, can support any type of loading by
direct streases, whereaﬁ the arch can carry, by direct stresses, only
one type of loading.

In order To determine the transverse bending moments He o we
consider a free body in the form of an elementary arch insluded between
two adjacent cross-sections of the shell which are dx apart. The equi-
librium of the arch is maintsined by two sets of forces, mamely the
load p acting on the element and
the forces aﬂxv fax { Fig.XII-57)
the latter is kmown as the specific
shear. The specific shear at any
point, acting in the direction of
the tangent to the shell arch, may
be rescolved into horizontal and
vertical &nmpnnﬂnts. It is clear

that the sum of the vertical com-
penents of the specific shear would balance the load on the shell arch;

the bhorizontal componentsof the specific shear which are symmetrically
disposed about the crown balance themselwves.

We consider first & single shell with or without edge beams. It
is clear that the elemantary shell arch cut out from such a shell will
not develop any restraining forces or moments at its ends. Hence, we

have a statically determinate arch.
Next, we consider the elementary arch cut out from an interior

_shell of a symmetriecally loaded group -of multiple shells. is the shell
- 500 =




arch is restrained at the ends, it would ben=ve as & fixed arch. If

~i& loading on the shell arck i= symeetricelly distributed across the
cross-section, one would expect the degree of indetermizansy to be
whree. Eut the degree.of indeterminancy invelved is oaly two, as 1o
vertical reactions develop at the eads, the vertical loading on the
ghell being fully balanced by the sum of the wvertical cooponents of
the specific shears. The elementary shell arch fixed at the ends znd
acted upon by the load and the specific shear may be anelysed by any
m2thod apolicable to fixed arches to determine the transverse momernts

:* -

Applications
1) i e cireular shell without edpe beams :

Denoting the angular distance from the crown to ar arbitrary point

by t¢p and half the central angle of the shell by Yo and assuming
the unit load p to be uniformly distributed over the surface, I.u::d,gran,

in bis book on cylindrical shells, gives the following relation :
2 ; 2 2

2 2
& . = A
- -E-—qr- { - @ (3 g, = ¢ )
16 ¢ Po .

The momesnt i.s negative along the whole width of the shell and has the
form shown if figure XII-58 .

Mo
[
e
EIE E'.'I_EE "H‘
o b
Transyarse [joments ﬁ'
in & Circular Shell . ‘| :
without Edge Beans T . !]" |.lH|l'llII|m.....
a T
The maximumr moment at the crown ics therefore :
— 2 2
0 = 2/l D a e

For B vertical concentrated load F, acting cr tne midile of a

stiffening rib, the moment in the rib, foryw > o, i3 given by :

P a i " 2 2
Ee = { - W) (59T + 4 _ap+ )
* T3 g0 P o &
=]
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2] Cireuls= er s le without edge bapms
The transverse bending moment of an .inner circular shell , acecording
to. Lundgren, is Eiwen by :

2

2
Mp= _-.-E.._:;?r.p-?jtp 'P+1D:‘-':P*F-EJ.*F}
356 ¥

The moment is negative et the springing and at the crown but positive
at the guarter point (Pig. XII-59). Numerically, the statically indet—

My
Fig. XII-59 toad { % 2
Transverse moments ___g:_%__- .'i.-i i
A8 e wpA T Q.

|| .|||!|

without edge beams

erdinate negative moment at the springing is the greatest and agual to

lflqua-_-p.n?.ipﬁf'zl

i.8., only % maximum moment in a single shell. The moment at the crown
is :

2 2 '
M = - . - P 48
T .8 E”

2 value that is only 1/9 of maximum moment in a gingle shell.

The maximum positive bending moment takes place at an angle PIrom thoe
erown that cfn be determined from the relation :

dig/ dv= 0

woich gives %= 0.638 ¥,

Introducing this wvalue in the general equation of Hy, we get

max ks = D . 8., $° / 44,5

The normal force in lopg shells with a £ 10 ms may be estimated from
“he followding relation :

Hp=k «p . &

The values of Xk are shown in Fig. XII-60.
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The bending moments and normal
forces in the critical sections
of an inner long cylindrical
shell subject to uniform load
p can accordingly be summari-

zed as :r:pllnws 1

k H =k

1.5 T

Ladt3

. /"ag
,D = L]

p—

)4

edge T .

& 5 (crowm)

Fig., XIT=50
Sectieon Springing max Mg+ Crown
¢ P =% . W= 0.638 P P=0

Bending moment by

_paEiFifEl

+pa2'¢|'§.-"ﬁ4.5

- P az-iPE S 48

NHormal force Ne

Q.80 p &

143 p a

The transverse bending momants in circular symmetrical inner shells
with edze beams may be assumed of the same values shown in Fig. XII-5%9
Accordingly, the transverse bending moments and normel forces of the
example given in Fig, XII-54 are :

Secticn Springing max Mo+ Crowmn
P ~'-!='='tlﬂ'E ?= 0.658 ﬂPg_ P= O
Mep = _E_ﬂiﬁ - 1;?2‘:’ = =530 | + '%#F:--?f =250 |- 9-.3;35_?—‘“,: ~.235
He=kpa S— 0.86 x 5633=3124 | 1.43x%5633=5200
in which _
P E.E q‘.vnz = 400 x E.!.DBEE' ¥ E'.EEEE = 11220 kg.m. and

b-a
It is

= 400 x 2-083 = 3533 kg

clear that the transverse bending moments are relatively
low so that a shell thicimess of 10 cms reicforced by two

meshes

6 B am/m and 5 ¢ & ma/m circular and longitudinal bars respectivelry
is generally ample. It is however recommended to increase the thick-
ness of the shell gradually from 10 ems to~15 ems at the springing
and at the diaphrapgms along a distance eguel to 1/10 length of arch.
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I the spac of the shell is"small (< 15ms)}, a slab thickness of
E exg, creased %o 12 cms at the springing and diaphragms, is genera-
11y sufficient. Such shells are reinforced '
br one mesk, & ¢ & mu/m circular and S 4 6
longivtudinal, except at the edges where we
need two meshes,

At the end diaphragms, local bending
moaents are induced in the longitudinal
direction of the form showm in Fig. XIT-61
The mayimum ordinate can be estimated by :°

: 2
max M_ = -p.x" /2

Il- = 0.76 ll'a.. : -

2 = radius-and t = thickness of shell , p = total load f'mE
The determination of the transverse bending moments at different

points of & simple cireular shell without edwe beams can be treated in
the following mamner :
a slice of the shell one meter long , is considered as an arch which

iz in eguilibrium under the action of the loads p and the specific sh-
aar EE___JFI e x (Pig. XIT-62).

in which

In & statically determinate shell subject to uniform load p per
sguare neber, EHI‘P..-"‘ﬁx must be constant along any generator in dir-
ection ¥ because HI varies linmearly in this directicn {refer to Figs.
ITF-54, 35 and 368) : so that in a simple shell, we have :

W, 1

7
xP wx 2

It he= Ffurther been shown that
max Q@ _ _p

max K =
¥ yom 2 Yom
in which
T = the Total load on the ‘shell per meter run . So that
oK =
- i -2
s T o

Its distribution along the section of the shell is similar to that of
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Rx?’ i.e.; with zero ordinates at c¢rown and foot of aAarec and mazxiaum as
the c. g. axis. It may be assumed trianguler with a maximum ordinate

equal to = —S- &5 shown in Fig. XII-53,

Jor

Wil

[ ] =
o x Foor
]
R Ny 1 5 e :
Yo o x CaBe axis

Parabolic "Triangular
Distribution of ﬂHx,P/ax

Pig, XITI-53
4171 the statical values required for the design can be determined bF

the strip method as fellows :

1) Deterzine the arc leagth from the relation s = 2 a @, , where ¢
i= measured in radians .

2) Divide half the erc into a convenient number of strips, eack of
length & & (normally 2 to = meters). Deterzmine the coordinate z' from
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4 bkerizental axzis z-z and ¥ froo
the middlie vertical exis beth for
the midile ond the edges of each
strip sc that Az and A 7 are kaown
(Fig. XIT-64),

5) The c.5. axis can be determined

by dividing the statical moment of

the elemental areas about any axis FIG. XII-64

(e.g. z=2) by their total area. The I

statical moments 5, El , and the moment of inertia I -1 :::a.u then be
easily determined

4) Determine the shear forces N, o @nd the specific shear E 1 ,-"B X
Irom the given relations; aithar 'l.:]:.e real parabolie d.:.stri‘l:rutian or
the equivalent triangular distribution ( fig, XII-63 ) may be used.

5) The statically determinate transverse moments for p and R o/ OX
at the middle of the different increments may be determined d.irectly
assuzing the specific shear in every increment parallel to the tangent
at its c.g. in which case if we assume that the gpecific shear on an
element ( e.g. 2-3 ) is o |,
then its moment at points 3,
ﬂ-ami_'ia:re;‘gni .,g;?n#ﬂ.nﬂ

”
1 3
JnE wiere n, , n, and ng /’}/.)F: T

ere toe normals <froz points / \\ I||I | gl ¥/

5+ % end 5 on the line of Tl LA .

action ni‘,ﬂf. ( Fig. XII-55 ) \ \ | : //
i ;

In order to deteraine Dgy \\ j /
\ B

we have
cos ¢ - = a /o - o" i Nl -
= - \"'w.,_ / ‘!h
hence o - "= &2 / cos ® g end % = |
P _ = o =
il :15'“'a Ll o Y16, XII-&
=35f¢ - g - &
therz=fore
- —r . L ——— =
a5 =({0 =20 -a}cusqﬁi '{nns¢5 ELJE-G-'E'F; or
n= =a{l-=nslp5}
Fimilerly n, -a{l—nnstpqul end
oy =a{l-cns-p3} PR -

i BOE -



The =ronsverse moments due to specilic shear can alzo De aster—
onined by resolving 4'5 +o its vertical and horizontal component: and
multiplying them by their distances Ircm the different points on the
arg, It has to be noted that:

The wertical component V of the specific sh&a.r:ﬂ acting on +the

element AE, is:

an ol
x Pt T e
vn.ﬂﬂsd_uc:?:-é-;—_..&.au Al = Az

The horizontal component H of the specific shear acting oo the

elaemant As,is:

an o
E=J=us¢=ﬁ.ﬁ5.—§--§§ﬂ.ﬂr

The transverse bending moment is negative althrough as shown io
Fig. XII-664a.

Transverse Bendine Homents in a Simple Circular Shell with Tdpe Beams

7 : FIG. ZII-66 <

4 single shell with edge beams nmay be assurped, for symmetrical
loading, as once statically indeterminate. The statically indetermi-
nate value is the connecting moment X between the shell slab end toe
edge beam. (Fig. XII-66). If the edge beams are sufficiently deep and
the necessary constructional provisions are taken to prevent them
from rotation, we may assume that the angle of rotation at the spring-
ing is egual to zero and the staticelly indeterminate moment I can be
determined from the eguation of elasticity:

ﬂ:éﬂd-]{&ll
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50 that

The Hﬂn diagram can be determi-

aed as shown in the previous case
{ Pig. XII-G6 & ), the ¥, diag -
Tam is rectangular ( Fig. III—EEE}
and the final transverse moments

are thernfcrg determined from the
relation : ( Pig. XII-67 )

I'l’-’l ltr.-n.r '{f*""'r’;!' i,y
-C-r F ﬁ?‘-l"-l war il ar p{.'.i'? ;

H:HE'I-IHl

Transverse Bepdins Moments 3% an Inner n;:.‘j:cular Shell with Edge Beams
_"_""-"'_—'——-_.l.n.u—_.._"___ —.
This case is twice statically'indeterminate, the unknowns are
“ae connecting moments xl &nd the horizontal thrust xé at the joint
between the shell slab and the edge beams. The eguations of elasticity

arre

ﬁlﬂ“‘ll ﬁll"'IE ﬁ.le = O
B

s+ %y ﬁa+za Eze s 0

Fanal Sumrvarce 2.

Ililjﬁﬁﬂl'm"l"

T

I
| < :
j FIZ, ZIT-58 ]
in which
E‘E,-EHE}MJ_&H."EI. Eu -Z"fﬁﬂfEI are the same &8 in

previous case.

'52:: nEEﬁ 1&2 Aef E

=

6., =Z 12 bs/ 31 and b, Tu u, & s/EX

- 308 -



The M, and the Hl - diagrams are the same as those of the previous
case ( fig. XIT—66 o and b ). The HE" diagram is shown in fig.XT1I-68a
Generally Il and ;E are negative which meane that the bending moment

at the springingk is negative end that IE acts outwards reducing the
statically deterpinate axial forces. The Tinal <Transverse moments

are given by

M = “n + Il El + IE “E
The axial force in the shell is egual to the resultant of the speci-

fic shear and the components of the load p and I, parallel to the
exis of the shell.

External Loads and Internal Forces Acting on End Diaphragms.

The end disphragm of a shell may be an arch with a tie, a frame
with curved girder , avertical plate , a truss ... etc. as showno in
figure IIi-69 a, b &nd ¢ ).

N

% | .
v i
i

The loads of the shell slab are transmitied to the diaphragms
through the direct shearing forces N_ p 2cting along the axie of the
shell at the end cross-cection. '

Thaeir menitude can be determined from the relaetion t

Ney = max * 5/ I3y

Their distribution is parabolic with a maximum ordinate {wafmax.J
at the neutral axis of the shell given by :

RopMax = Q .« / Fomp
They may also be assumsd 4triangular with 8 maxioum ordinzte
egual to

Ex¢max = 4 QIEI £ 3 Fomp

= 500 =
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Fig, XIT-70 External land and internal forces acting
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S .{5..-.-457 Forces

h

which is more convenient for the numerical calculations. Fig.XTI-70
shows & sircple diaphragm in which the forces K, acting on the dif-
ferent elements 4 5 of the shell are resolved tn their vertical and
horizontal ::nmp:ments V and H where

V=0=N o
I‘x‘P‘LEBin‘P*Hztp“ﬂ“"f_a" Hx¢ﬁz and

- BLO



HﬂHI"-F" AS unw:ﬂxm.ﬂa. -H-me. AT

in which Az andsy have the same meaning shown in figure XII-65
As & check for the calculaticns E V must be egual to qma:.:.

Having determined V and H, the corresponding bending moment
ghearing force and thrust with respect to the axis of the diaphragm
can be easily determined.

Prof. Dr. A. Shaker® in an " Introduction to Three Dimensional
Analysis of Structures " has given three examples showing the nume-
rical analysis of the internal forces in long shell roofs by the
bean method namaly @ y

1) Single long c:.rlin.ﬂ.rinal lshell roof without edge beams,
29 T " " " with vertical edge besanms.

- 3) Intermediate long cylindrical shell roof with vertical edge beame.

Constructicnal Detailg.

For normal ‘bmul vaulte the maximusm practical gpan L is 25 ms.
It can be increased to 50 ma. if prestresaing is used.

Figure XI1-71 shows cylindrical parallel berrel vaults with and
without edge wvalley beans.

- 1 ,-' |
Pacallel shells witl’ L \ 14 b“’:fﬂi;

yallay beams \ L wd

' . —~ ,

o f’f;t’ Ky I w:.’rﬁ:wf;l \\ £ 4/ _J

_"2;.;,.‘1_5{5_.#1-1; 3 N, & ,‘j'{\/-"r |
k7 SN

———

= Professor of Theory of Structures at the Faculty of engineering Aln
Shams University.
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The following pives guide lines for the convenient proporticns
gf eylindrical barrel vaults.

L/ b=2 and h /L = 1/10°

These proportions give the optimum value for economy consistent with
strength and deflection requirements. L /b may however be increased
to ® or even more and h /L may be decreaased to 1/12.

s

d/L may be chosen 1/15. If edge beams are not supported by interme—
diate columns, stiffenets with & cross-section varying between 15 x
15 cm. and 20 x 20 cms, at the third points of the spans are usually
reguired o prevent lateral imstability of the compreasion zone of
the eadge 'nu:am. E

If the edge beams are supported by intermediate columns and
d2»50 cms, then stiffeners need not be used.

For capt in situ ghells the thickness t should not be_ less than
B cms o0 be increased to 10 cms for 16m< L <25 me. and 12 cme for
biggar spans.

The thickness t; at the springing may be chosen egual tol /120
usually between 12 and 20 ems. It is a common practice to increame
the thickness by ~4 cms for a distance of | /10 from each end.

The angle y, should always be kept less than 45°, otherwise
double shuttering will be needed near the springing. If the above
proportions are used, o will automzatically be less than fee

Sachnowsii in his text book " Btahlbetonkonstruktionen " recom-

mends the following proportions. [ fig. XII-72).
R gy L5 ffm — 5 {,,«-'_’:

I i --f.'f

FIG. XTT-72

Pig. XIT-73% ghows the details of reinforcementa of an intermediate
shell O meters wide snd 18 Bs span. The shell is 7 cme. thick, increa-—
sei Yo 15 cms.over & lengtk of 1.00 m at the springing and end-dia-
phregms. It is reinforced with one mesh 6¢ 8 zm/m circular and S5¢:6

mo/m Joeogitudinal except at the edges where we have two meshes. The

o D
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diagonal reinforcement at the cormers 48 arsranged at the middie of
the shell slab; they must be well anchored with the bent bars of the
valley ‘edge beams which are reinforced by 12 < 25 normal mild stesl.
T+ is however recommended %o replace these longitudinal reinforce-

ments by eguivalent deformed high grade or cold twisted steel for big-
ger strength and higher bond.

Pigures XII-74 & and b ghow the general layout, main dimensions
and details of reinforcements of the inspection shed constructed at
Gisr—-El-Suez garage area. They show one of +the wide posslible applica-
tions of circular cylindrical shells. The shed in this structure ,
covering an area of 22 x 49 ms, is supported omn six columns only.
Tte thickmess is 10 cms increased To i4 cms on & emall digtance at
the edge beams and end diaphragns. The shell, in its ecross-section ,
is composed of & circular part 12,4 ms wide and two overhanging cir—
cular cantilevers 4.8 ms each. It has four edge beams: two outside
ones 15 x 100 cms sach and two intermediate ones 25 x 75 oms each av
the joint between the cantilever arms 4nd the central part. In the
‘longitudinal direction, the shell is continuous over two spans 24.6
ms each, It is supported on three diaphragms: one intermediate and
two edge ones. The peinforcement of the shell is composed of two mesh-
as: each 6 < 10 mm/m circular and & 4 B mu/m longitudinal. The long-
itudinal reinforcement in the intermediate edge beams is 18 ¢ 25 mm
and in the outside edge beams is 34b 25 + 6% 22 mm. The longitudinal
reinforcenent resisting the connecting noment between the Two spans
of the shell over the intermediate diaphrapgn is 254 13 mm top and
botton. The diagonal reinfercement shown in plan is arranged to resist
the principal diagonal tensile stresses in the shell.

The diaphragms are twoe hinged frames with overhanging cantilevers.
Their main girders are inverted in order to have & plane bottom sur-
face for the roof. Due to the severe variation of the moment of iner-
tia of the diaphragn-girder, it has been possible to make its niddle
gection 60 cms deep onl¥e.

The soll at the site of the garage is cozposed of clayey layers
that are much affected by water to depths varying between 10 and 12
meters, underlaid by medium sand. The foundatvions for the main col-
umns are single isolated footings composed of rectangular reinforced
concrete footings 50 to 60 cms thick resting on rounded plain cono-
rete deep ones reaching the send and having & depth wvarying betmween
2 and 9 meters. Their top surface is 3 =ms f:'uﬁl ground level.

The cross—section w—x of the underground path necessary for in-
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svection is 1.70 ps deep and C.80 ms wide; it

reizforced concrete U-section on elastic foundation subject to +the
rolling wheel load of the busses. Its walls and floor are chosen 20

cms thick and its main longitudinsl reinfarcement is 11 & 16 mm at
the bottom of the floor smlab and 8 < 19 om at the top of the walls as
shotm in Pig. LII-74a.

has been desipmed as =

L ﬂrnsa—slg:‘_nnmed Uylindrical Shelle

If the cross—section of a
shell is eimply supported at the
edges & and e » there is only
cne Btatically indeterminate wa-
lue, consisting of two wvertical
reactions X , from the longitudi-
nal walls. {( Pigure XII - 75a )
I is to be Bo determined that the
total vertical displacement at
the springing i= zero. For sol-
ving the problem, we choose as
main system the free arc e &' wi-
Thout supports at the edges e apd

e' . The equation of elasticity
is therefore

Trangracrse Hﬂm ﬂﬂ!{-f

shedl .l'.r:rﬂjp.ll.}‘ ru‘_nfurf.-r' s

E=ﬂ='ﬁu+5

X Mo e
where
'Eﬂ = wertical displacement of i e
the middle section .of the # . g
main system due to loads; Transvaree Momanls
and aha ',l’:rr.n.-u-" tf..ﬂl;
E"I = vertical displacement of the FIG. ‘Y1195
Same section due to the sta-
tically indeverminate edge
-loads I.

Both values are to be calculated taking the beam and the arch action

in consideration in the following manner :

'L'n = 'E'hn + Ean = vertical displacement due bending moments in lon-—
longitudinal direction (beam action) plus wvertical displacenent
due to bending moments in eross direction (areh action).



Tor a shell simply supported between the diaphragms subjected to
a uniform load p , we have

i

where, T is the total load on the arc per meter run in the longitudd—
pal direction, and Il--l i the moment of inertia of the cross-section
of the shell about the c¢.g. axis. The displacement §__ can be com -
puted according to the theorem of virtual work from the relation:

& = J M das
where I, = v / 12, M,, is the transverse bending moment due to the
loads p and the specific shear al{’-iwfa'x ghown in figure III =75b-
heavy curve - and is to be determined according to methods given in the
previous article. N ¥l is the transverse bending moment due to I=l.
It is however convenient to determine the transverse bending moment
for X =-p / 2 because for this load, the corresponding specific
shear snd transverse moments are the same as for the uniform load T
but with opposite sign. (Fig. XII-V5pb, thin curve). In this mamner,

we have i3
o= £ -| Heolm o
P E Lo

Analogously, for a load I = = 5 / 2 , the total edge vertical dis-
placement can be given in the form :

E‘I L ﬁhx + Eﬂx
where E"'bI - ﬁbﬂ
HE
ﬂ.‘l':l.'d. BEI = % .Jr L S ds
) EI

the walue of X reguired to bring the edge back To the original level
can now be computed from the relation :

= &

2. 0 2 . “bo + “me
== 59"“: G -y L
P I T Opx + Yax

Ths wariation of the finel transverse moment is shown in figure
III-75b ; it is negative in the neighbourhood of the crown and po-
gitive near the guarter points. Numerically the positive moments ATe

= A2l5 =



DlEEer.

Whether the shell is a little longer or shorter is not uf much
importance to X, because the beam deformations are: small -:-.:::mpv.red to
the arch -iefnrmatinns.

1f the cross-section is Testrained at the springings, it 1s Twice
statically indeterminate. The two redundants are the wvertical Ieac—
tions and the restraining moments. Since the two restraining moments
equilibrate each other, they have no influence oo the beam action of
the shell. The transverse moments for this case are showe-im figure
¥TT-75 ¢. 1In shells of ordinary lengths, the resulting moments are
negative at the springing and in the neighbourhood of the crown, but
positive near the guarter points. Rumerically, the moments at tTthe
springings are the largest. However, the thickness of the shell may
be increased here if neceasary.

Shells restrained at the edges transfer a greater part of the load
in the transverae direction than do shells with a siwmply supported
crosa-—-section especially in shells of considerable lengths.

Lundgren in his text-book on eylindrical shells, gives the Tollo-
wing data for cross—supported circular shells.

&) Bimply Supported Cross-Section

% € 4 2 2 & -
M, = = 28— ( 0.023% 9, —-0.2138 v, ¢ + 0.2379%, ¥ - 0.0476 % )
W

o
The maximum moment is obtained for ¢ = 0.73 o end is Ei"i*én by =

max. M, = G.03 p 12 q:'E

s

The reaction from the longitudinal wells is :

X =0.239 p a ¥,

i.e. ~ 24% of the load is transmitted to the transverse direction .
in these relations, it was assumed that the beam deformation E;- is
negligible compared with the arch deformation E'a at the edge n.f the
main system, The ratio O, / 6_ cen however be given in the form ;:

B

B PR w3 L Y 9

and the beam deflection will increase X with factors ( fl'a + E'-D ) ,.-"EnEL
the conseguent increase of the moment ie somewhat larger. As an exanmn—
sle, & 10% increase of X will increase the maximum moment by —~ 20%.

w HE -



1t has been stated before that tranaverse bending moments in sin-
gle shells without edge beams (fig. ¥Ii-5B8) are relatively bhignh and
negative althrough with a maximum value &t the crown of :

¥, = - 0.187 P ol

Whereas in cross supported single ghells, the transverse beunding
moments ( fig. XII-75 a) are negative at the crown and with a value

of 5 3
HD--D.{}Eﬁpa '@u

and positive in the outer parts of the arc; -the mAarimum valued lie at
= 0.73 v, gnd are egqual to

max. M, + = 0.05 pa> 95

i.e. smaller than 1/6 of l.iﬂ in eross-unsupported shells.

Moreover, the bending moments and the ecorresponding concrete com-
pressive avresses and tension steel as well as the shearing forces and
the corresponding ehear StTesses and diagonal steel ars reduced by

~ 28 & . .
Lundgren in his text—book on eylipd—ical shells has given an exam-

ple on 8 simple eross~supported shell. We ;
show in the following & Summary of the data, the _‘./--""_'-’_ -—E”F*"J‘F
design and a discussion to the fipal results. I_ 1
( Pig. XII-76 ). L 1y
-l -

1) Date %1

— e

a shell, 30 ms. long and 1% mS. wide isB el
simply supported in both directions. The slope 4 T .
at the springings will bte v, = 37.5 = 0.854 \\,,;1.3-‘-’5
o |

radi 1s. The thickness of the shell is & cms. !
the sectional area of one edge beam imeluling FIG. ¥II-75
s = . HLI=T

reinforcement may be put equal to 4, = 0.30 - i "
The total dead and live load is p = 220 dead + 55 live = 285 kg/ =".

fise Fw & (1= cos37.5 )=11.5 ( 1= 0.793) = 2,37 ms
Distance of c.g. £Lrom top of arc M =1.32 ms
atatical moment S end mowent of imertia I about c.g. axis

5, , = 0.788 = 1, , = 1.595 @
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mhesreticael lever arm

Yor = 1.595 / 0.788 = 2.02 ms.
Actual lever arm act. ¥om = h - {1— + h' )
Assuming b = 2.5 @S5 _ and ht = 10 ecms, we get

actual Fhp -2.5—{%ﬁ+ﬂ.l] = 2.15 ma.

Total load f:Epawn-EIU.EBEIH.EIﬂ.Eﬁ-‘FE‘Ir.."ﬁ-E t/m 8shell

Internal Forces

a) _Shell Free at Fdges

pax. M = P2/ B=48.32x30° /B = 485 m t
max. @ = P/ 2=24,32x30 /2 = 6&4.8 %
cax. O, = ET/ I, =485 x1,32 / 1.595= 400 t/a° =40 kg/on”
For &/t = 11.5/.08 = 144 max. allow. O, =38 kg/om®

maz. T = MFam = 485 / 2.15 = 225 ton

LA, =T/20, =225/2x1l.8 62.5 om” high grade steel/edge

]

. N_= Woep = 64.5/ 2.15 = 30 t/m on both sides

15 t/m on each side

18.7 kg/fem®

maE

max

max. T, = MWax. Foo S 2 = 30/2

max, T = max. T,/ 4 = 15000/100x8

max,., transaverse bending moment at crown
My = - 0.187 p a° 5 = - 0.187 x 285 x 11.5°x 0.654° = - 3000 kgm

Lundgren has computed the cross bending moment by the strip method and
tne mayimum velue at the crown was found to be egqual %o - 2028 kgm,
The difference is due To the existance of the edge beam. However, a
snell B cms. thick cannot Sustain such big moments by &ny means.

b) Spell Supported at Longitudinal Fdges
The statically indeterminate wvertical reaction can be estimated
from the relation :

X = 0.239 pawy, = 0.239 x 285 x 11.5 * 0.654 = 510 kg/m
The max. positive transverse bending moment can be estimated by
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max. K, + =0.03 pa® g5 =0.03x285x 11,52 x 0.654% = 480 kem.

If these wvalues are determined by the strip method, the;v are found
to be X = 436 kg/m and max. M, + = 321 lgm.

These differences show clearly the sensitivity of the calculations.
But it is clear th.a_rt; the cross supports hare_ reduced the transverse
moments to less than 1/6 of HD created in free shells that & thick-
ness of 8 — 10 cme. is poasible .

Accordingly, the total load transmitted in the longitudinal direc-
tion is given by :

F = 4320 -2X = 4320 - 2 x 436 = 3442 kg/m' and
maz. M =P (2/8 = 3.442xI30° /8 = 387 mt
max. g EEI_}E = 3,442 x 30 S 2 = 52 t

o, max. =M7 /I, ,= B387xl.32/1.595 = 320 t/n°= 32(:& kg/on”

max. T =M/ Jygp = 387/ 2.15 = 180 ti.e. 90 ton each
max. by, =T /29, _ 1a0/2x1.8 = 50 co® high grade zz;::u
max., N . =Q/ Jgp = 52 / 2.15 = 24.2 t/m

max. T_'.l:tp = max Hﬂ /2= 28.2/ 2 = 12.1 +/m on each aide
mex. T =max T /b= 12100/ 100 x 8 = 15.1 ke/en®

B) Hestrained Cross-—Section

#, = - L.r (0.0134 & - 0.1519 @ 9% + 0.2173 92 ¥ - 0.0435 9°)

¥o
Numerically, the largest moment occurs at the springing, Wwhere

The reactions from the longitudinal walls are :
I =0.305 pav,

i.e. 30% of the total load is transmitted to the transverse direc~
tien. The beam deflection gives & correction whiech 18 considerably

greater than for a aimply supported croas-sectlon. Firet, the factor
10.7 in the formula of B, / O_ must be replaced by 42.2 . Secondly,

&n i.u:re-m&n‘l: to X of 10% will increase the transverse monent at the

springing by 3% % .
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5—3_3# ~ Tooth Shells

Nerthlight cylindrical shell roofs as shown in figure XII = 77
provide ample and uniform daylightning and large coluzn - free spaces
for factory buildings located anywhere in the Northern Hemispnere. They
are especially suitable for factories inside which precision opera-
tions ars to be carried out. The distribution of the light in halls

:J‘:‘E_:{g.- =

\"Irr.ﬁf =

Hg{l'm.r - Jr,pnn :"

Y

FIG, XTI-77

eovered by saw-tocoth shells is much better thar in halls covered by
plain saw-tooth roofs as the luminance is uniform, shadow Ifree and
of mach higher wvalue.

The span of northlight shells, if not prestressed, is limited to
about 30 ms. The more usual spans lie in the range of 12 +to 25 ms.
With prestressing, spans up to 40 ms are possible. Where large um -
obstructed column - free spaces are desired, the spacing of columns
at right angles to the span may be made as large as 25 ma. by suppor-
ting a number of shells on a single diaphragm as shown in Zfigure
IIi-78 '

Lo rs

TIs. XII-7B
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The following guiding rules may be used for the proporticning of
a saw-tpoth shell : ;
The radius a is to be less than 12 ms. The width b to span | may be
between 1 : 2 and 1 : 4. The ratio of 1 : 2 leads to economic Struc-
tures. The height h shall not be smaller than | /6; the rise f of the
circular segment shall as & rule be greater than | /18; the height hE
of the gutter beam shall not generally be leas than | /18. The angle
6 lies usually between 60° and 90°. The thickness of the shell t for
cast in situ, roefs should not be less than E cms, 10 ems for spans
exceeding 15 ms and 12 cms for spans bigger than 20 ms, The thicikmess
tla.ttheaprim;ingiﬁuﬂunllylzcmﬂ ( for t =B cms ) and 20 cms
( for t = 12 ems ), If d or b, are chosen smaller than [ /15, stiffe-
ners 15 x 15 cmas at the third points of the span are reguired to pre-
vent lateral instability of the compression zone of the dege beamn.

Determination of Internal Forces '

The analysis of a saw=-tooth shell is more time comsuming than that
of a symwetrical cylindrical shell because it is unsymmetricel. Howe-
ver, if the shell is long, i.e., | /a > 5, the beam method, described
in the previous article, with Bmall medifications, gives satisfactory
results. Instead of using the M gz /I formula, we bave now to use the
formulas relating to unsymmetrical bending because the shell beam
cross—-section is asymmetric. Otherwise the procedure remains the same
s before. This method has the advantage that it aveids the wuse of
higher mathematics, but it is exectly equivalent to the Lundgren beam

nethod.
We give in th&irullnwing the main steps required for determining
the internal forces : ( Fig. XII-79 )

1) Determination of the Properties of the Secticn

The total area of the section of the shell 4 is equal to the area
of the edge beams, in which the reinforcements may be replaced by an
equivalant concrete area, plus the area of the arc equal to 2 a ¢ o E-

In order to determine the center of gravity, the statical moment
and the moment of inertia of the secticn, choose an origin 0, the mid-
point of the arc; the axes 0z and Oy are chosen along the normal
and tengent to the shell arc at T .

¥ Hamaswamy. ﬁ_ﬂﬁslg:n and Construction of concrete shell roofs " .
Published by Mc Graw-Hill Book Company. New York and London.

- Y



Divide the =hell to a convenient pumber of strips of lEnEthf;Elr
L85 4 4 55 .- B8tc, determines the area of each strip Ad and the co-
ordinates z and ¥y of its center of gravity. The co-ordinates z. and
Ta af the centroid G can be caleculated from the relations

sﬁz}:ﬁ AASA and Jg =L Y AAJA

Wheo the position of the centroid is thus determined, the moments
and product of inertia about the axes Gzq and Gy,, passing through
the centroid and parallel to Uz and Uy respectively, are next cal-
culated. That is :

Hdbr Y

Fe

FIG. »A1l-95
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Iz.lzl =E.ﬁ!l.j‘2 - Lyg

Iy, = Lba = = &8¢
I;rlzl =Taby 2z - AT %

From these values, the orientation of the principal axes of iner-
tiga G 2 and G Y can be fixed from the kmown relation :

)

Tan o = i
2 2 Iyy3y / ¢ Tayzy 13,71

( The asngle ¢ is to be taken in the clockwise direction from- G 2 )
The principal moments of inertia are therefore given by =

2 2
I = 1 cog“a + I gin“a - I gin 20
Zz 212 ¥171 ¥1%1

= 2[[ E =
IIT 13131 o3 + I“l“l BinTa + 13131 ein 2

2) EBending Momentsa, Longitudinal Stresses U, and Longitudinal For-—

e —

cCeE Hx

The co—-ordinates of the points with refarence to the principal
axes G Z and G T are next caleulated using the formalas.

Z ={5-zﬁ}cnau-(7+yﬁjam=

T =(n-53}3m¢+{y+yﬁjuﬂﬂﬂ
The load p is resolved into its components Pe and Py along the
two principal axes. Pg causes bending about T Y axis and Dy about
the T 2 axis. The moments caunsed by ﬁz and py are denoted by Mg
and ﬂf , respactively. '

The longitudinal stress Gk = Hx / t at any point in the s=hell
is then given by the formula ' :

M
o = N/t = Z_ z+i~.r
Iyy %2
wheTea 2
o e BEL . wa e ©
Z B & g - -5



in which
by =P coB (v, =a) and Py =p sin (¢  —2)

P being the wvertical locad per square meater surface.
dssuming UM, / Iyy = ( Fy ) and ¥y / Izz = ( By ), we can write:

ni = fot = ( ¥ 22+ Py + I 4

This expression gives the values of O_ and N_ at all points of the
shell ; they are egual to zero at the neutral aris. Hence, the egua-

tion of the neutrel axis is given by :

0 = (By) 2 + (Fy) T
Assuming further (Fpd / EI&j =(F )

the egquation of the neutral aris can be written in the form :

The longitudinal force N, on each elemental area is determined by mul-
tiplying the streas O at the center of the element by its area LA.

In order to have sufficient safety against bu:klins y the maximum
normal stress in the shell ﬂ;z mast be emaller than ﬂh max,., Bhown
in fipure XII-51, while the stiffeners shown in figure XII-77 prevent
the lateral buckling of the edge beam.

The correctness of the statical caleunlsation can be verified if the
following two conditions are satisfied :

a) The sum of the normal forces acting on the section = 0, or
3 EI As = D
b) The internal resisting moment is equal to the bending moment due
to loading, i.e.,
3 N: A BF =M
The check is made at the ﬁiﬂﬂpan section, and thg moments are ta-—
ken about the Oy-axis which is equal to p cos ¥, | 8 .

3) Shear Stresses

In case of saw-tooth shells, the diructinn of the shzaring force
2 does not coincide with the principal axes % and Y of the sec-—

tion, hence
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% 5y S 5z

T = + —_—

IY T Iz t

in which
Qg = Egnns(wﬂ—u}
Qr = @ =sin ( Wy -a)

are the components of the shearing force along the principal 2 and
Y axes. ‘

However, Ramaswamy in his previcusly mentionsd text book on shell
structures computes the shecr Stress using the principle that in a
 beam subjected to uniform loading, the difference between the speci-
fic shears at any two points is equal to the longitudinal force bet-
ween those two points divided by the bending moment factor, which is
12 / 8 for & simply supported beam. The proof of this statement is

as follows :
It has been shown that
[r_ae = ms/1,, Neo, = @871,
and for the section at the diaphragm, we have
So that
Nep/ Q= max. Boo/ Qe = 8/17,
But for a simple beam subject to uniformly distributed load T , we

have : Q = pi1 /2 so that
Feo/ @= max, N /P1/2 = B/ 1,

at middle section , we have further B = P 12/8 so that
e 8 I, 8 P /2 8 | f2

It has also been stated before that in a simple beam subject to uni-
form loads, the relation between the specific shear at the middle

and the max. shear at the diaphrapm is given by :

2N

vo F2% = max. N g Sz, B0 that
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[ ¥, as aN_,
=

12_ [ B

rhe difference between specific shears at points A and B = longit.
force N_on & B / ( 12/8 ) . The specific shears 8K, ,/2X &t the
c.g. of the strips are obtained by adding the differences of the
specific shears already obtained. The shear resultant N, is equal
to the specific shear maltiplied by | /2 .

4) Arch Enl-:ugt;nn

In order to determine the cross bending moments Mg cand axial
forces N, , & Blice of the shell, of unit length, is regarded as an
arch subjected to the action of the external loads p and the apeci-
fic shears SN, /8x. Caleculate first thelr components g and -
in the directions of the axes T, and E:r according to the rela —
tions ¢ ;

hepce

2 x

8N
9, - Po + -E;JE- _ﬂm}
x=

p,
St -, S
= -+
9y PT 3 x ¥
Next, add these loads starting from point O and ending with point 14
to get N and H:T according to the relations =

N, =X 9 and N . = I 9y
fiow starting from point O (and assuming that the sheil is not
connected to the adjacent shells), the increments of the bending mo-—
ments from point to point of the cross—section are calculated as 1

&H"FP= N}_.ﬁm - B, Ay
in which Az =and Ay are the projected lengths of the elements. The
summation of these increments gives the transverse bending moments

Ky, &b all the points of the cross-section.

This procedure does not inelude the force in the window posts and
hence the bending moments at point 14 will not be zero. The cross
bending moments can however be corrected dus To this force in the
following manner : ;

The correcting moment I, must satisfy the following conditlons

1) K,y = 0 at points © end 14.
2) ¥y a‘tpnintﬁl.'_j:ﬂ,z:u]:uumpnnﬂntnffnmeinuinﬂﬂﬂ
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posss pe-pendicular to the line joining B z2pd 14 oultiplied by the
perpendicular distance between the Two points.

Mes. is however & linear funetior of F and © and may be represented as

]'.'.ﬂ=£2+]3-3+{3

The constants 4, B and C can be deterzined from the three conditions
given under 1 and =.

The finsl transverae noments are thus given by:
Hp: i‘.fwﬂ--n— L 1

According to the above mentioned principles , Ramaswamy, in his
text boock on shell structures hes given the mummerical analysis of =&
saw—tooth shell as that ghomm in Fig. XII~79. The intermal forces in
the shell were as shown in Fig. ITI-80.

) ffm i
) W ||1||HH|I1|le ||'||‘||iFH '
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...E.'-l.-f:: : Tpes ﬁ;.!'m, radiwr a5 80, ft‘:'rj#lrr . rv-ﬂ,ﬁmf:".cdz ugﬂ’r
’rf-‘;

[t e ol

- .
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Pip, XTI-B0

Fig. XT1-Bl shows the general layout and main dimensions of a
part of a saw-tooth shell covering one of the main hells of "El Hasr
Forging Plant" at Helwan 48 ms wide and 144 ms long. The nortk is
perellel to the longer side of the hall snd %he saw—tooth form of the
shell is chosen such that the windows are facing the north. The dist-
gnce between the windows (breadth b of saw-tooth shell) is 9 ms. The
bigger length of the hall,ldS ms, is divided inte 5 blocks: one block
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been cosputed bty the mezbrane theory, it is therefore necessary,alitar-
werds, to consider a case where the edge carries the loads -iip and -

be.

The load - _ does not give any essential perturbation (small).
dore ioportant tnan the edze load from Hﬁx is the load originating
from Hg = Pp T- For vertical loads p this force is Ny = - B r cosg,
at the edge. This means that the shell is under the influence of 2
tangential line load at the edge of P =p r cos ¢ . (Fig. XII-B4).
Thisz load is transferred to the traverses by the lowermost part of
+he shell which acts as a slightly curved deep beam with span 1 and
width €.

Since the nenbrane shear forces are snall,
the stress distribution in a short shell may
be imagined in such a way that the shell carri-
as the load as a wvault, and at the springings
the normal forces in the wvault are taken by
+the edge zones, which transfer their load to

the traverses.

According to the theory of deep beams  , we Fig. XII-84
have:
For a simple deep beam of span 1 subject to a uniform load P
max., T = 0.2 P 1 (1)

Assuming Fop = 0.5 1L, we get for continuous beams:
At middle of ouber spans and over intermediate supports

max. T = 0.2 P 1 2}
and at middle of inner spans
max. T =0.13 P 1 (3)

where max. T is the tension in the eritical sectins of the deep Dean.

Centr al__ahm

Since the tensile force in the deep beam varies aApprox. parabolic-
ally between the traverses, the maximum gentral shear at the traverses

may be set egual to:

max. N, =& /1 (&)

Trasverse bending moments
According to Lundgren, the transverse bending moments may be taken

# Rafar “o "Thecry and Design of Reinforced Cencrete Tanks" by i.
Hilsi. Published by J. darcou & Co. Cairo.
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as & wmetion of the two dimensicnleas parameters p and ¥ wibich may oe

found from the relations:
p?=s.8553) % (5) and A = L.688 . Y *{ . (&)

For the transverse bending moment, +the shell is assumed simply sup-
ported over the traverses pecause, so far, +he analytical method is Dot
practicable in other cases. Thisg is & very important limivation since,
in general, shert shells are actually continuous over several spans.

For a shell simply supported at the springings, the transverse ben-
ding moments are negative, with a maximum value of

1ot P a
(1 + EY i T 72

Tne corresponding normal force is given by:

max. g = —

O.B84
¥ (1 + 1l.4°
I+ pa= tc be noted that a free edge at the springing is seldom en-
coungered in practice, but even if the edge is strengthened by a 1ight
edge beam, the formulea 7 and 8 for My and Ny may very well be applied.

- If the support can take a restraining moment, 1t is reasonable to
base the design on the followlng case:

For a snell fixed at the springings, the maximum negative fixing
moment at the edge is given by: :

~ 3 P a
max. Mp= = 0.50 (1 + 0.15X) =3 (s)
The corresponding normal force is .
Example
Fig. XII-85 represents the cross fop@em r

section of & circular short shell
with a radius a = 27.4 ms and a width
b = 35 ms. The rimse £ = 6.32 ms and
the corresponding angle at the spring-
ing ¢, = %5,7° = 0.693 radians. The
length of the shell 1 = 10 ms and 1ts
+thickness t = 10 cms.

Assuming that every second span is
covered by a skylight, “the shell may
be considered as simply supported at
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at the traverses. At the springings, the shell is provided with edge
besms which rest on vertical columns or wells. An investigation has
shown +that if the edge beams areé of .the order say 25 x 50 cms, their
torsional rTigidity is sufficient to secure complete clamping of the
shell, Therefore the condition for applying formula 9 is fairly satis-

The interne]l forces in the shell be ecalculated for a total verti-
cal load egqual to p, where p = 350 kgfma surface.

The ghell is first calculated by the membrane theory. 'Hmm

Maximum +transverse comp. 8t crowm: N_ = - p a = =350x27.4 = -QEEG kx/m

N
Corresponding conc. comp. stress : U, = =p= = i%gai—m = 9.59113:-:""-‘-“12

e
. 2980« - 2
Maximum allowed buckling stress : 0, = 65/(1 + EEEFE-EE) = 27.4 kg/cm

22536 kg/m

Max. shear at the springing: H::@- = pl sing, = 350x10x.639
Corresponding shear stress T =N,/ & = 2236/100x10 = 2.24 kg/cm®

Membrane tesile force at middle of span (x = 0):

1
Tn=§lﬁﬂx¢dxnzjﬂp:ainqbnﬂx=p(g-—x‘r“}sm:ﬁa or
T, = 350 x ﬁ x 0.639 = 5590 kgs
Perturbational load at edge P = =Hyg, =D a cosg, but
cos g = 2 > L= E?':?:f‘f’a = 0.769 therefore
P = 350 x 2V.4 x 0.769 = 7374 kg/m'
Tension due to F (egu. 2) Tp = 0.2 P 1= 0.2x7374x10 = 14740 kgs

Total tensile force T =T, + Tp = 5390 + 14740 = 20330 kgs

Reguired reinforcement 4 _ = %,— = %‘1{%{% = 14,5 e~ chosen 5 £ 19 ma
' s

Max. shear at traverses according to egquation 4 1is given by:

i

N, =% =
LS —'T _-]-E

If this shear is to be resisted by transverse reinforcements (stirruns)
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axclusively an ares of 4 = f'ér = 5.25 en“/m i.e. 9§ 10 mn/r is

gufficient. However, & part of the shear may be resisted by bent ur
bars Irom She longitudinal reinforcemens, The design corresponds o
thet of an ordinary reinforced concrete deeep Doan with an arm of in-

terpal reslistance Fom = 05 1 = 5.0 ms.
The maximus transverse bending moment at the springings is, accor-

ding to egqu. %, given by:

max. M#, = = 0,50 (1 + 0.15%) %ﬁ
in which
¥ - L:688)a t _ 1.6887/27.4 x 0.1 _ 5.0
- —1; = .J'_D == = -
end ! .
2 - _3-'_ B 27 4 27 .8t s
£T = 5.85 3 L S 5.85% x v 015 = 2685 g0 thoat

-

max. Mg = - 0.5 (1 + 0.15 x 0.28) x ?5'-’:{[*’-'?*‘* = - 400 kg
83

The corresponding normsl force is Np= P = 7374 kgs (compression).
The secticn of the shell at the springing is to be d&sign@d for these
intarnal forces.
It is however advisable to inerease the thickness of the shell grad-
ually to 14 cms at The springing on & length x where
X = 0.76)/a t = 0,76)/27.4 x 6.10 = 1.25 ms
A Thickmess of 14 cms and top reinforcement of minimum 6 @ B mm/m

at tne springing are supposed to be emple for the acting forces.
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Fig. XI11-87 shows the general layout, main dimensions and details
of reinforcements of the main supporting elements of a part of +pa
sarage of "El Nasr Steel Pipes and Fittings Co.” at Helwan, The main
garage covers an area 38 x 90 ms without :’:ntemadia'l;& supports. At-
tached to it, there is a ghed for cars having a span of 9 @ms and a
cantilever arm of 3 ms. In the longitudinal direction, the hall is
divided into three blocks: 53X 9m+ 4 x 9m+ 3 x 9 m = 50 ms.

‘15 a cover for the garage, a short shell 10 cos thieck, incraaged
to 14 cms over a length of 2 ms at the springing, is used. Its radius
is 36,5 ms, its width is 38 ms and is supported in the longitudinal
direction on arched frame traversss with ties every 9 ms. The traver—
ses are 0.4 ms wide and 1.35 ms deep, increased -to 2 ms at the corners
and decreased to 0.7 ms at the lower binges. The.side:shed.is covered
by a 25 cms two-way hollow bloeck slab 9x 9ms. It is supported on
longitudinal beams and inverted cross beams, 9 ms span with 3 ms over—
hanging cantilevars. .

The shall is reinforced at its bottom surface by a mesh 6 @ 8 mm/m
except for the first 8 ms from the springing where the circular pein—
forcement only, is increased to 6 § 10 mm/m in a distance af 1.5 ms at
each side of the traverses. Top reinforcement for the shell is needed
over the traverses and normal to them for a distance of 2.5 ms at each
gide. It is also needed at the straight edges and normal to tham, for
a distance of 2 ms from the springing. The top iongit. reinforcement
over the traverses is 6 ¥ 13 mm/m for the middle & ms and then reduced
to & @ 10 mo/n on both sides. The top circular reinforcement is 6 @ B
mm/m except for the first B ms from the springing where it is increased
to 6 ﬂ'lll.n mm/m in & distance of 1.5 ms at each side of the traverses.
The top reinforcement at the spriging is one mesh 6 @ 8 mm/m in the
space between the Top reinforcements resisting the connecting moments
at the traverses. The details of the intermediate traverses and their

ties are also shown in Fig., XTI-87.

- 33F =~



¥IT- 5 MIMBRANE THEORY OF SHELLS OF GENERAL SHAPE

1= Baséc Tdea

The purpose of the following is to develop a & general mmnb:-a_qa
theory for shells of arbitrary shape and then to show its application
to some simple cases of shells of double curvature and especially th-
ose which do mot fall in one of the special groups considered before.

The basic idea of the solution, developed by Pucher, is to exam-
ine the entire system of extermal and Iinternal forces acting on the
shell in the plan projeckioo. It will be showm that the determination
of t.he. j.ﬁternal forces in many cases can be done by a surprisingly
simple way. -

We choose for this purpose an orthogonal co—ordinate system x, 7,
z in which the z—-axis is vertiecal. If we cut the shell surface under
consideration by two pairs of wvertical planes x, x+dx and ¥, y+dy they
meet the shell surface in curves which in general are not normat to
each other (Fig. XIT-88). The elemental rectangular area in plan pro-
projection dA = dx 4y will correspond to a rhombus on the sheall surface
of area T diA; in which '

> = l/_l + fazféz}z + {ﬂ:!ﬂ:r}i (1)

This equation can naturally be used only if 2=z/dx fec & 2z/o7 £ o0

|
shell | surface

FIG. XI1I-88
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Assuzing that the components of the load on the shell surface are Py o
Pgy Py &nd that their corresponding values oo the horizontal project-
1nnare51,gr,g.tnenmhave=

= APy = A A 2

Ey = Ey =Apy B, =AD_ (2)
1t will be assumed further that the real normal and shearing forces
an the sides of the elemental area of the shell are H:’ er. HTI' EI

and the corresponding reduced values on the Plan projeciion e, an 2
HEI’ n. as shown in figure XI-gg.

(8] o P
‘I'I-,r T
4
Py
My
P y
yE
My
positive direclion of n-farces
Iy }r}

The relation between the real and reduced forces can be expressed in
the following aanner : ( Pig XII-80 )

ﬂ S I pe— — .  —
‘_::E::j -
i J
--.._,_____-_-_-“r_-l!‘
FIG.XII-90
n, dy = ﬁx dn . cosg ,
%ﬂ,}':lind'ﬂ. cosj3
8o that
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N E‘,“: ay nI

£5% =

x cosz dn cOSC
By 4 Oyy
Vey= Gosg @ “oosp - P T iz

8izilar egquations ¢an be ex=~racted for the relations between Dy 1 n:x

cos B ,

it
and HF v By Hence

B = ﬂ\' E—E‘%ﬁr ¥ H:[!E = n.!. ! {5]

This means that the reduced shearing forces are alsc equal. The values

of cos ¢ and cos @ are given by the following relations j
[} oz
tmm:a and tm:{!,.-.t.— (&)
J
Hanca.u:and.P and the cos-values required for calculating I and HF
can be easily deteroined.
Fhese egquations can naturally only be used if
gafix #= y 98y Ew
The previous relations give the reduced internal forces 1in a
point in the twe noraal directions x and y. The forces acting at the
same point in any two other normal directions U and v making an angle
o with x and 7 can be dstermined in the same way nosn in plane str-

wctures,thus: ( Fig XII-91)

o
4 = X
r'r_"""*--._____d_ﬂ
) HH"""-..U dx
|
f
3
Ir d:fl d'i'
|I|I
ity
FiG.X1I-91
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n, =n1ﬂoﬂacr +nJ, sinEcL +Enncnsuainu
I, Dy si.nau + n_.}.a::s%r —Enﬂ,ﬂns:r gip o«
D=0, = { O, = By ) cosmx sina + nz_‘?{ cusE:: - Elﬂ%}

The magnitude and directions of the principal reduced ( or actual

forces can therefore be calculated by the known relations :
: + n._ -
I‘ézk?b_:T/(_IZ‘i:’E P Dﬁy (5)

e T

2— Conditions of Eouilibrium

tan 2a =

We give in the following the conditions of egquilibrium of the re-

duesd forces D s nF and J.'1;.:Fr = acting on the sides dx and dy of the

I
Fax
plan projection of an element of a shell due to the reduced load comp—

onents By o g}, and B+

2= 1 Condition of Equilibrium in the ¥ - Direction

The reduced forces and loads , ¥ i dwe w
. | ] |
acting in the x- direction are snown T.n : : X

in figure XII-92. One has to notice xi

that =EI U-I‘
g
e, - ':-;i_xLﬂx and a'usz ai;ﬁ'_ &y y

The conditicon of equilibrium in the x ¥

direction is giveno by :

dn._rdj -i-ﬂnnitq-gx.d:xdx = 0
Euhs'l..—itutiqg for d.i:L‘ and dr.n , we get
[;%ded?zfi?_—d}'dx+5xdxdr=ﬂ ar
-9;.;: - -5;%_“:5— + By = 0 (73

=

2= 2 Condition of Savilibrium in the »- Direction

The conditon of egeilibring in the ¥ - direction can gimilarly

be expressed by the relation : (Pig XTII-93)

N -



~
-

nydx

4 gfd dy )

4

{ ﬂr L dl‘l, ]d,x
,.'I'
FlG. III-QQ
_?_ ....F 0 (8)
2= 3 Copdition of Equilibrium th - D tion

When writing the condition of egquilibrium in the z-direction,the
vertical components of the real

; o x
forces are to be considered in the e

following manner : ( Fig XTI-S4) =
The vertical component of Rx )

o
! I
Y "",d *"d_l
along the edge CD is Eiven by i
n, 3%
whereas that of H:a along the ' . {H?dﬂlﬁl t ﬁ-dﬂ:&dr
sams edge is

2z FIG.XTI-
Yy a7 . 2

so that the total vertical component alcng CD 4is givan by
Similarly , along the edge BC ,we have
az a
2 =113§F T ey 8%
Therefore , the condition of equilibrium in the z -

direction can be
Eiven in the form i

aV, &y + AV, dx + g_ dx dy = O
in which
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El"-lrl :'.."fE
.:iT.I'1=-—'—ﬂI and 4V, = —=— 4y

X a¥
3o that

avl -E?E

St Vg = O

Introducing the values of ¥V, and V, , we geu i

o

g az : I
s ( 8y 3%+ 2y 37 }"'Er':n:' 35 * My gx ! T EF O

Solving this equation , we Ze€T

2 = > -
= B a a2 oz oo = Fy o, (=
o + X + 0 + XL 82 4+ n iLém-+ L
- rEIJIE2 gax 9x ¥ ax.ay 3x aF ¥ axt 8y &7
aEz gn,, 8%
This eguation can also be given in the forz :
= 2
gl . y & =z ,5'2:-: ¢ an_ 3 gy J a2z
— n + I o + — % - +
n’cax"* x¥ yx ¢ 8x.d7 Yay" ax 37 2%
an. ﬂﬁxv az
3 a}
+* gy *TEx YEF T & T

But we have : DIF = HFI and

= o ol o a
3 NE Sy b2
3%ty "B + T3j3 *‘ng = =By

so that the egquilibrium eguation in the z - direction can be gi'i.ren in
toe form:
3§z EEE sgz 3 " (9)
+ 2 4= E =

o - *7 ax.ay nﬁ’a? -
in which

% 3

g, =8, -~& 3 ~&TH (20)
For shells subject to vertical loads only

By = O . i o= 5 aRa B, = & (1)
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3~ Ihe Pucher Stress Differential Egquation

Ia order to siaplify the probleam v W& will limit the following
studies o d to i [s] ¥ « In this special
case , the three conditions of equilibrium can be expressed by the

relations

2 n
i+3 =0

., 8ax ar
f;".t ... S } (12)
E

;:-

+ 2 + +g = 0
;E Sy ax .2y Y ;E ]
The determination of the reduced internal forces in shells by
the use of these thre# simultaneous differential nqﬁatiuns is generally

couplicated .
ia order to simplify the problem Pucher hae introduced a stress
function F such that : .

a._eE__
™y = Py " 3%.37 (13)
F
3 =
Py f; ‘
With these relations , the first two conditions of eguilibrium

will be satisfied and it is sufficient to satiafy the third condition
wiileh ¢an be put in the form =

& 22y
?—IE_'?_-E% a:aar Lyg_ %_'FE"EG R

giving ' Pucher differential equation ' for shells subjected to wver-
tical loads eonly .
. TWith respect to the orthogonal axes x , y , 2 , the stress

Lo

function F represents a stress surface independent of the origin O and
the position of the horizontal plane x ¥ .-

—rm-



When dealing with shell problems , the edge conditioms of the
ghell define the shape of the stréss surfece at the adges and hence

they must be taken in consideraticn as will be shown in the following

illustrative exaaples .
4= Illustrative Examvles

4~ 1 Paraboloid Shell of Revolution with an Eguilateral Trianzular

Plen
Shells supported on three

Points and bounded by three ar-
ches at the =dges as shown in
figure XII-95-a may give an
architecturally striking sol-

dtion for the roof covering

of relatively big span halls.

I%¥ will be assumed that
the edge arches can resist lo-

ads in thier planes ooly apd

have no resistance to lateral

forces so that the force comp-
onents normal to them must be 24 @

&gual to zero. In order to sa- ! 31
fisfr this condition , we sho= (b)) -
ald hawe : Hffffff
Fadge =0 (15) ii'
4 paraboleid of revolution
as shown in figure XII-91_b has

the equation

h
z = P o ( =+ 5 ) (8)

Our study will be limited  FIg,XTI-95 \
B .

‘to shells subjected to uniformly
- 341 - ¥




distriputed load g. In this case we have;

aeufaxz = h /2 a° ' aaw'a:: «2F =0 ) 323.-"532 =h / 28°
so that Pucher differential egquation can be given in the form:

2
%—+%§—=-E“s (17)
d =] b

In orddr to satisfy the edge condition stated before, we have

further :

F = 0D

edge
A4 function equal to zZero along the three sides of the ground

plan can be constructed as follows:
a) Write the eguations of the three sidesof the triangular plan of

thes shell such that the right hand gide of each eguation is egual o

zero . Thus

8 =-— T =10 ywﬁgkﬂ - B = ) and T o+ £ 8 - o
' Y3 V3 Vi V3

b) The stress function F will be equal to a constant C multiplied by
the left hand sid¥# of the eguations of the sides . Hence

P = C - 14 _2 8 X b 2 a P i
VETERITHR B B S

=C ( a IE + a 32 + :j - :‘jE - 4 -?i b

¢) It is possible to prove that this function satisfies Pucher diffe-—

rential eguation if
ﬁ ==-8g/2h

So that the .stress functiod F is given by :
>
F= -85 an+n:'2+—§--Iy2—4—;—-—] (18)

. . : -
gand the reduced internal forces by i

» Refer to Csonka "Membranschalen" Bauingenieur - Praxris. Ho 16
Published by Wilhela ZHrost & Sohn . Berlin. Hunchen.
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N
!
id
|
g
=
r
A

a
h =—t— = - 2 ¥ | (19)

ny =45 - J

The internal forces HI > HI?.'.'-" = H:r:l: and H-F acting oo the shell

can be calculsted-using eguations 3 and 4 as follows :

Accordins to equation & , we have :

‘cosa= 1 .i‘"/_l + (32/3%)° and ¢os B= 1 ,,r'l/l + {EEIEJ}E
but 3z/ax =h x / 2 a° and (3z/8x)% = b2 2° ;s & a°
ao that

cosQ = 1f‘|/1 + Ehzxz.-" 42ty , gimilarly cosg= 1/ 1 + (hErEﬂ_La#}

and

nnﬂﬂfd::nsu.=fll"'{hé—faf—rq'a#}.g 3_1?_5-_._

ﬂ-+ <
Vis e & 288 Vaaae e

T
similarly cosk/ cos ﬂ-.l/‘ a_t b
i aq' + :I::.E ',1:E

according to eguation 3 , we have

4a4+h212

gos8_ .8 - 'l/
e =M S - o=V ¥ SEE R

o 2
cos o a 4 B + h
#F*%m!--ELfﬂi-I}Jﬂ.a-bh |:' (20}

, e . _aE
Ny = Fpx =By = Byx == 7

Example

‘To illustrate the application of these equations , toe internal

A

forces in a triangular shell subject to uniformly distributed load g

- R o



will be deterained for the sepaial case :
a-=h

In this case , we have

2 i 2 + "
-3

H = =g Ba+xX ]]ff; &E + y {21)
E ;
h a® +
H:T = HF = = g ¥ P
The evaluation of these walues zives i
1= A=H = X = B
e ot i 2 . 2
4 g 4 4 a~ +
R =0 ¥ K = o= EE_E"‘ =- = o EE -|—|—|-|_L ¥
x v Vs & . l/ 5 s
Por 7 = o + 53 + a—l,.f. 3
HT = -1.7%9ga -1-95ga -2, 36ga and
H:y = =g ¥ { linear relation ) , hence
Fory =0 , HIF =0 and for y=%a 73 . HIT =, + 1.7%5 ga
£= Aloheg the x-axis ¥ =0
2
N,=-g(a x}iuzi hence
4 &
For = = (] + ﬁ - a -
H: = -8 - =2 . 24a =4 .25Ega
+ E -
F_==g( a+x N -3
¥ hence
}F 4 EE + x;
For = = ] + & - g - 2n
HF = -8 =1.79g8 o +0.71ga
We have further HIF = 0 due to syametry !
3= Along p-n ¥ o= g-.-f_r;.

- 344 -



i EE +:KE hence

N =-gf(a-x)
= . 4,75 a
For x = o + a/2 a - a/2
B, = -0,92ga =0.47ga o =l.42ga
H ==-g ( a+zx }‘Vf 4*2512. bhence
v & &E + zE
For =x = o +a f2 a - a/2
Ny,=-§ =33 = — 0.857 g a = constant .

The saleulated internal forces are shown in figure YTT1-96. _
I+ is clear from the given diagrams thet the shell is subject to
compressive stressés over its whole surface with maximum values at the
corners along the bisectors of the angles . The maximum compressive
force is given by :
. DAY, Hx = = 4,25 g a
Due to symmetry , the compressive force at point O is the same
in all directions
Hxﬂﬁ HFﬂ- -g &
Tensile stresses exist at the corners normal to the bisectors
of the angles. The meximum tensile force is -
max. NF = + ﬂ.?lrg a
The biggest shear streasec exist at the edges , zero at the mi-
ddle - due to symmetry - and maximum at the corners. The maximum walue
is
mEx. HW:: 4 1.735ga
At the corners , a rhomboidal element with edges parallel to those of the
the shell is in & state of pure shear. Hence the principel compressive
and tensile stresses along the bisectors and normal to them are equal
to the shear stresses , thus

- 5 -



-N, =N, =¥, =1735¢ga

miemal toree =

roeff. xga

IIII!H“ll

||| Il e

g ='|[| || [
S l||||

"ay il|l|l|1||1|1ii"h|i| 1]

compression —

fension +

Stress Resultants in a Triengular Shell for a = b .

Accordingly , the stresses in & 10 ems thieck shell with 3a =
%30 ms and b = 10 ms subject to & uniform vertical load g = 400 kg f m*
horizomtal are given by @

daximum coapresaive stress at the corners :

— 346 -



= o1
max., O, = max. N_ / A, = - 4.25x400 x 10 / 100 x 10 =-17.0 kgfea”

Compressive stress at crown

) g, & = 1.00x 400 ¥ 10 / 100 % 10 == 4.0 "

Principal tenslle stress at corners normal to bisectors
) = +1.735x400 210 / 100 x 10 =+5.9% "

Although the stresses are low , 1t is recomended o increase
the thiclkness of the shell gradually to 15 ecms at the corners in a le-
nziibh of gs. 0.5 a aeasured along the bisectors of the an.les. dAccord-
ingly , the coApressive BTress C% and the tensile gtress Gi at the co=-
raners will be reduced to 10 / 15 = 2 / % the given wvalues. hence

max. O, = - 17 x2/3 = - 11.3 ks/ea™

nav ﬂ"l = +5.94X2/3 o + 4,63 L

The reinforcemant is Zenerally one @esh 5® 3 /2 in sach direction

except at the corners and the edzes where it is recommended touse two

meshes as shown in figure XTI-97.

The supporting arches are

2 meshes
subject to the shearing foreces of
the shell acting parallel to the

edge , These fprces are zerc at

A m

the erown and ipncrease linearly

10x 3

to their maximem walue at the
springing. The sum of vertical

F

components of these forces act-

ing on any of the arches must be His ! [Z25m |

egual to 1/3 total vertical loads

acting on the szaell. F1G,XII-S7
Mesbr Shells with Rectan 4 Plan

_ For roof constructioans, ghells which perzit covering rectangu-
lar big free areas { fig XIT-98 a ) are of much interest. They are



generally supported by four vertical arches that can Tresist verticad
forees snd are uncapable tec resist horizontal forces.

The eguation of the ni-
ddle surface of & paraboloid-
shell of revolution using an
orthoszonal system of co=-

erdinates 0 (x,F7.,2z) shown on

figure III-98=b is given by

z = =B (22 +7) (22)

b4

2 &
Its second derivatives are: é;"_" =
Eaa / 512 =h / & .
£z faxay = 0O h&J_“
£z /ay” =hb / &°
1
Limiting our study to the case (L) -
of uniformly distributed load ; 3 a |
gme horizontal , tae Pucher | o
ifferential equation can be _
given in the form :
a
2%y ay 0
- ( E;E—-+ 5;?-“}-+ g =0 (23) i >
As the edge arches are unable a
to resist lateral forces,tne
stress Idnction F bas To ga- .
tisfy the ooundary aunditinﬁ=

FIG.XITI-98 Y Y

; 3 = D (24 )

edEe

The following relatich® gives

§) kefér to Csonks "Membranschalen". Bauingenieur - Praxis. No 15

Published by Wilhem Ernst & Sohm . Berlin. idinchen.
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an approximate expréssion for the stress function satisfyins equatioans

{23) and (24)

" 52 72 xETE 5
. - Y 1 - ¥ 7 + f* + 422y (2
’.-_*#th( T é— = 4 T (25)

The reduced internal forces are accordingly given by : .

- i e

2 2 m 6.2 . b4 b B W
SUR o2 U T IR I i S T o
8 8 10
a a a

2h a® ac a®

e o2 __._..;v.:”._+ﬂ_.£'&_.zf 12223 ¢
Elﬂ

nIF.
2h a _ 3 n
Lk { wi .P_in. ELEE_I_. E_EEIE _____zg
2 h a® aﬂ at

However, Jdurashev, S8igalov and Baikov in their text book
"Design of Reinforced Concrete Structures"™) have given the internal
forces in a shallow convex shell of constant curwature. The shell is
rectangular in plan and supported at the edges on four diaphragis abs-
clutely rigid in Fh&ir own plane and absolutely flexible ﬁﬁéﬂnl to that

plane. (Fig. XII-99). This determines the edge conditions of the shell,
Y . '

%) Mir+ Publishers - idoscow
_31'.5.9_



whsa x = 0 ani T =8 H:r.

" r=fp 2

Ny

” The shell i= subject o compressive normal forces E::' HI’ and

shear forces N__.. At the corners , prinecipal diagonal cosapressive and

xrF
tensile forces Ilfw'l2 and Hl are created,

With & = b and Ty = Ty =T, the coefficients of the forcesg can
be deterzined according to figure XIT-100. The forces are obtained for
the various points of the snell by multiplying the corresponding coe-—

fficients br a conscant equal to &.p rfni'
Y

Ny for sec. y=0 d

™ 1
&
‘/: E . 2 . o

LT gy a3 Ay

; |

Nyy for sec. Y=a/2 : : .

=2 [+ | | |
o - a L

TSy A SRR

a2

12.88

dg PR Fj,; _='L — 'E‘r‘i—f_‘i

12.88
B.78 |I'~-'F
o S
=
'
"]
=
.84
a/2

asz | a/z

Ny For sec. Ym0

: CH

P ag dy L

N = coefl.x apr/m”

1138

% 1 3%

Internal Forcesz in Shallow Convex Shells with Square FPlan

FIG. XII-100
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In fhe zones adjacent toc the supports, bending moments are cr-
eated. Yheir numerical wvalues are not large, but however must be con-
gidered ir the design . -Their magnitude can be determined froz ths

relations &

M=0.3pr+te? =iny (27)
where € is the base of natura; legarithas,v = x / s and t = thickness
of the shell. -
The saxizum bending moment is
max., 4 = 0.09% r t p ' (28)
and actz in a section at a distance x; Irom the edge , where
x, = 0.8 y/r t (29}

The diaparasms resist the shearing forces transaitted by tine
snell , taey act parallel %o its edge.
Example

The numeriéal evaluation of the given method is shown in the fo-
llowing example.

It is required to determine the inteérnal forces acting in & sg-
uare shallow roof shell with L =2 a =2 b = 40 m=; its rise o at
the center is 6 ms , radius r = 68.2 ms and shell thickness t = l0cms
if it is subject to a uniformly load g = 500 kg/u~ horizontal.

All the required forces can be determined froa the data given
in figure XI1-100.The constant factor for determining the forces is

4pr/m’=42x0.5% 68,2/ n° =4.35 t/n
The asximum coapressive force at the aiddle of the shell, :

Hx = RF = = 3.84 x 4,35 = =16.7 t/a
The aaxizmum coapressive force at the gone adjacent to the edge:
N, == 7.30 x 4.35 = -31.8B t/m

The maximun principal compressive and principal tensils forces , and
the ;hﬁar forces at the corners of the shell, are

i 'HE = H.l = Hﬂ = E-EE * 4!35 = 55"2' t"llrm
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The maximum bending moment
mox, M= .09 r t p= .004 x B8B.2 ¥ D.1 x 5Dd.¢5uﬂ kgm/m
acting at a distance
x, = 0.6Vr t = 0.6 1/88.2 x 0.1 = L.57 =m

The.gnzpréssive force Nx in this section can be determined by linsar

interpalation. Thas

ﬁx = =1,35 X 4,585 x 1.57 % 12 / &0 = =2.95 t/m

Dne to the high principal compressive and tensile sbresses at
the corners, it is recommended to increase the thickness of the shell
gradually from 10 to 16 cms along a length of about 0.15 | measured
along the diagonal.

Accordingly , the maximum coapressive stresgses are!

At orown g, = -16700 / 100 X 10 = -15.7 kg/on

At edges o, = =31800 / 100 * 10 = =3l.8 -

At cormers G, = -55200 A 100 % 16 = -=-34.B w
in spita'nf that , the shell is reinforced over the greater
part of its surface by one mesh 5 ¥ 8mm/m. |
The disgonal tension reinforcement on both sides at the corners

can be calculated as follows: (Fig I1I-101

Foe g 55 + 4a  849.5 o BB GEEI z
sl o o 1.4

=
Bl 4 R 29 " - _..-4""'.IIIIIIIr
- el ~ s 8 w7,
2 ﬁg 1.4 .f
L
A = J?L_d-iq- = —-ED“l— = EE L] ol
g3 i
2 & 1.4
&
i 25 + 20 s E:E - 1i6 Tl
= . g 1.4
5
i - EG +lli§= ;EFIE' - .l..l-l-E 1}
55 LY
? 'C'- J.-'¢ “h-."""
N
Ty PIG. EZL1-101
N )




In order to resist toe bending moments &% the eupges of toe rnell
additional reinforcements mey De reqguired normal To the edges.

The edge Adiaphragms have Tc supcors their own weight plus the
shear of The shell == K

. ¥
The errangement of the reinforcement is shown in figure IXII1 -102.
. o
! :

rgreirirgerdh Sl e NS S

%?/7/{/ fﬂf _EJJ!;;id | ;;;infi:j-'ru:t. -
7

FIG. XII-102

For an elliptic paraboloid on rectangular plan with sides Za and
2b and rise h; and h, &5 shown in figure XII-103 the eguaticn of the

surtrace is given by

b h.
E=-%— IE-P-?& :-"E (30,

a
The total centrel rise h of the
shell is

I.‘;=:"21.-L+]:|2

The derivatives of theé seguation 3  Ry ia

FIG. XII-105

E—.E"E i — _l.-"l
v/
gz/Aax = Ehlx,-"ﬂ.e pzjay = EEEEII:LE ¢31)
322/0x° = 2n,/a" 8%z2/0x 9y = O 822/ 85" = 2h,/b°

If ry and T, are the radii of the generating parabeclas then

2 2 2
1/vy 72 8°2/8x° = 2h)/a® and 1/r, /%8 22/ B32= 20,07 (32)
socordingly, the Pucher differential equation for a reduced wvertical

i



load g 4is given by :
b 2 2
271 F , =2ha acF _ _ y
L 'IBL: z e - A E (33

If the two generating parabolas are identical, the surface i= called
e rotatiomal parsboloid and is characterized by the relation

n,/a® = B/t (34)
so that
/vy = AW/r, = 1/r (35)
and  8%z/8x° = 8°/8y° = 1/r , @8°z/8x 8y =0 (36)
The eguation of the surface may therefore be given in the form :
2w 2= (x®+5°) D)
. 2
Hence
8z/ ax = x/r and dz/ 8y = ¥/ (38)

The Pucher differential equation can therefore be given in the form:

a2r e PO
‘—a—I-Z-— + F = B Ir Gg:’

For the solution of this eguation, Ramaswamy proposes to construct a
polynomial strese function. For & vertical uniform load PJ’WE surface, -

it takes the form :
Pu (X -8 )(3 =b2 ) (A +By +C) (40)

which automatically satisfies the desired boundary conditiocns :

L

n, =0 at Xm=+a (s
and Ig_rnﬂ ' at ¥=+ b
Thus
EEFIarE=ux=E'[J.:"‘+53:Eya+(n:_;az-nhz}ze
- 6B a®y® +a® ( B~ c_:_:] S
EEFKExE=n3-2[Br“--rsnxayzq.{c_uz—ahz'}f
ce AR PR o2 ( ae?- ¢ )]
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- 2°F/ Bx 07 = == 8( Lx7% + Bx ) + 4 ry ( 42 + BF - £)

{42¢

When the load acting is a vertical uniform load p per sguare pe-
ter suriace thern the Pucher difierential equation assumes the forz ;

2

ﬂEF;"_BR + EEE';' 83y° = =g =-pr) (&3]

subétituting for » the value given in eguation 1 and expanding
the right-hand side by the binomial thecrerm and lirmiting ourselves to

the Ffirst twe Terms, then

2

e
2%r/0x® +0%/05% =-pr[ 1+ E_El 5 (= 57 )] (44)
r

Substituting further for the derivatives of F from 42 & and 4301
and equating the coefficients of like terms on the left- and right-
hand sides of the eguation, we arrive at the following three simul-
taneouvs eguations in the three unknowns A,B and © :

ECG-ME—E‘:}

2

2 LGAES Ye g

2 (0 = A8° - Bb® —6Ba® ) = - p/Er (45

2 a*( Bb® — C)+2b(4s~ —C) = - pr
From the first two egquaticns of the set, we find that
Ab* = Ba&® (458)

Making use of this relation, E may be eliminated to give the two
fellowing simultaneous equations

2 AbY 2
C~ 42" = === ~6 4D = = p/4r {45b)
&8
1k = mm P S 2R B ) (45¢)

Enowing A, B and C, the reduced stresses are easily '~ md. The
method gives satisfactory accuracy if the shell is not too deep.

Exazople
In order to show-the application of the given relations the mem-
brane analysis of & paraboloid of revelution will be illustrated for
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the following date : ( Fig. ITI-104 )

2 &8 = 30 mn, b = 40 m 1
Hise &% crown b = hl + h2-= 5 ms !
Thickness T =10 oms E
o . & ] E X
Total load p/m” surface = 400 kzs ——
£
Choozing the origin at the crown, the o
equation of the surface iz given by ; '
1|'
5 = —ll- ( IE -+ }’E :i --'
E r | ga = EE“'I-
Hoting that z = h for =z = B and
¥ = b, the radius of curvature of the Ty
surface is given by : FId, IIi—lD#
Toe e { aE + hE Y = .. { 152 +-EDE ) = B2.5 ms
g h 2 x5
The constantas A, B& C of egquations 45a, 45b and 45¢ can be
calculated from the relations
(45a) 4 v° = B a2 or 20° 4 = 1573 4.8, B = 1.7778 4

_ 4
(45b) € = 4 a® - EEE- -6 4t = - p/8 x

(45eg) baa - C == pr/2 ( n; + bE b

Solving these three equations, we get :

4 = 0,007355 B = 0.013077 C =

The reduced internal forees are therefore given by
4

By = 0.014712 x7 4+ 0.156924 x° y* + 32,1130 * - 35.3080.v2 — 7970.22

n, = 0.026154 3' + 0.088272 x° 32 « 32.1130 32 - 35,2080 x2 ~17030, 24

Dyy= = 0.05B848 X° 3 — 0.104616 ¥ 3° - &4.226 5 g

Their values gre as follows
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= = 20

SiL24



On the x — axis _y =0 Pig, XII-105a
x 0 5 10 15 m
- o, 7970 | 7158 | 4612 o kg/m
- B, 17030 | 17913 | 20560 | 24974 -
At the edge “b/2=20m Fi I-10
x Q ‘B 10 15 m
- n_ 22093 |19712 | 12458 o kg/m
- o | o [12426]22391] 35094 |
- n.r D 4 ]
Cn the ¥y — axis =x =0 F I-105¢
b 4 0 5 10 15 =0
- o, - | 7970 | 8853 | 11501 | 15914 | 22093
— Dy 17030 (16211 | 13557 B453 o
At the x=8/2=1 Fig. XIT-1054
¥ o 5 10 15 20
- oy 24975 |236592 | 19516 | 11956 0
~ B,y (4] 6006 | 13189 | 22726 | 35794
-n, 0
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t is clear froz the tables that the shell is subject to compress-
ive stresses over its whole surface except at the corners where we 4
have n::._:,,h shearing forces HE*'F 3579 kg/n causing principal diagon-
al tesile forces I; (normal to the bisector of the' corner angle) and
conpressive forces .T.'IE (in the direction of +the h.‘l.EEI'.'-‘L'!.:}I'}- The maximun

magnitude of both Hl and IIE is egual to omax. Hﬁ, at the corner.

It is therefore recommended to increase the thickneas of the shell
at the cormers to about 20 ems. and te resist the prineipal tensile
forces N, by top and bottom corner reinforcements arranged at 45° %o
the axes x and ¥ normal to the bisector of the cormes a.ugie

Fig. XII-106 shows the general layout, main dimensions and details
of reinforcements of two seperate units of a peries of double curved
shell roofs of the elliptic paraboloid type constructed in Egypt near
Cairo. Every two units are attatched and supported on & main coluans
only. Bach unit Tovers an area 23194 x 24_,?5 ms. The rises hl and hE
of the shorter and longer diaphragns are approzimately egual and eq-.ch
is 5 ms. The shell thickness within e horizontal radius of 10 ns is
egucsl to 8 cms inereased to 12 ems within a radius af 12.4 ns and to
24 cms at the four corners. The central part, 8 cms thick, is rein-
forced by one orthogonal mesh, 5:{: B mm/m, the rest is reinforced by
“two meshes, each is composed of circular bars increasing frp:l 610
.::Jn, in the zome linited by the radii 10 and 12.4 ms, to 6 13 ou/m
et the cormers, end radisl bars S5<¢ 8 mn/m arranged radially in the
nammer shovn in figure., Each of the end disphrapms is an-arch 35 x 55
cns with & prestressed tie 25 x 25 cms. The arch is reinforced by :
Ed 19 mn and the +tie by & r.i- 16 mm in addition to four Frérssinﬁ ca-
bles 20 tons each.

ThHe roof strictune constrmicved 'accurdjng *to this=s systen adspts
itsell in an iOopressive, sirwrple, easy and econodic pmamner to rechanr-

wlur areas of relativelr big spans,
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4—% Conold Shells

4 conoid surface is originated when a Siraight line moves et one
of its ends on a basic curve C (called directris:) and at the other
end on a key line K in such ' _ =
a way that the straight line |
is always parallel to & ver-
tical guide plene G. Adccord-
i‘n.fj-',l;s:r., any wertical section _
between the basic curve G_'E:
'hh-.a kKey line E has the same x:-_-'?‘;'_—h =
Tforn and span as C but with | ] ‘ & iz, TTI-107
a2 smaller rise h, it is call- p

ed an affine curve. 41l sections parallel to the guide plene G are

straight lines and are ca2lled the generators of +ae conoid, Fig, ITI-
lﬂ?l.

4 shell roof is generally a truncated conoid, bounded By two ar—
ches la.mi O and 'h'wﬁ_stmight edges parallel to the guide plane G,
Its formwork is very easy as 1t is constructed from streight planks.

Depending upon the curve used as the directrix, conoids are des-
cribed as parabolic, cirular =
»+s &bc. Of these, the para-
bolic tonoid is by far most

COLC.

The generators of the
conold surface ‘being para-

|

I M
llel %o the vertical syn— ] !,ro J,r"/
netry axls of the shell, they i ! P
appear as parallel straizht Jr el Lf_/"

lines in the ground plan. Fig. XII-10&, Mig. III-108
The equation of the niddle surface of a Parabolic conoid shell ise

- given by: (Fig. XIT-109)

= 359 =



' - =2
s=.-—~r:1-‘*—h_§*-:r (46)
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Fig. XII-109 A parabolic conold

The derivatives of this relation are given by:

oz b 4 0z E hxvy
2%z o 2%z " _E-__E_g 2cz - BAF
EEE Gx 07 ab —l:"J';:r‘ﬂ a b=

In the following, the intermal forces due to a vertical load B,

wlill be given. 'E!Ez.fﬂ::a beins equal to zero, the conditions of egquilib-
rium, expreased by equaticns 12, cen, in this case , be given in the
form: 'O 'ﬁ:::: on_ TL"I::L:E-
E e et = ) __ﬁ B = 0 ;
[=h 4 Oy Ox

o= (58)

9=z a
:

. D2 2 .
Yo T T "=ixo =
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Tt will be usmﬂ &lso here that the edge arches can resist loads
in their planes cnly and have no resistance 4o lateral forces so that
the force components normal to them must be equal to zero, i.e.

.atz=a and x=a n =0 (1Ga)

It is further known that in a conoid she:u., syametrical about the
middle x-txis (7 = 0) subject to ﬂ:;!:na‘brical vertical load Eqs we
should have:

for T=0 a. =0 (&9b)
Due %o a vertical distribtuted load g/ mE surface, we have:

E
_.E[l+"ﬂ-2(1'-—;} }Eh : J (50)
=1

Satisfying the conditions of eguilibrium (48), the edge conditions
(49) and the relation between g and g, given in (50), the reduced in-
térnal foreces can be determined, according to Fischer from tha foll-
owing rahﬂﬂﬂs:

n_ = EE;h_bz{EbE -6 ) a— x) ~ i;i; (e® - 2)

bzfﬂ-l}-?{ai 5 P}




Tor the aumerical calculations, it is recommended to replace x

gand T brE S énd ¥ according to the following relations:
e £ b =
a2 = E& f_aﬂ-gna} and I=§T[ t;E}
the reduced internal forces can be given in the fera:

= | .2 3 16 s P 3
n, = j;z{h & (1= &5-)(1-3) - TE“'E:' o fé? v%a (1-3,)

1 h-  BhS .2
R L h{ﬁ[ ab< fom

2 Zn2 §7

n, = E«%%{ha (1- %E} 16 a EE -E—%- ['bE (1-57 -
P
-¥§i:hg%] 5? u_g%

Having determined the reduced intermal forces Doy nj, and Dot the

actual internal forces H_» H;r and H:-‘E? = Oy ecan be calculatd using

relations 3 & 4 and the prinecipal forces I, and I, using conditions
5 & 6.

Fig. LI3-110 shows the general layout, main dinensions and details

E
of a conoid shell solved by Fischer for the following data:

Theoretical length a = 12.00m , Actual length = & — 2_ = E.00 =

Erﬁ'ﬂ-d_ﬂi o mEw e W h:ED.DDIl' I..].EI.I... ris'& ........q...]l=i'-l-.5|:|m

Snell thickness £t =10 ems , Lnﬂ.ﬁfmg surface £ = 300 !;:g..-"m.a

& 5
§, = 52 = Tz = 03333 ; §,° = 0.03705 3 §,° = 0.004115 and ¥2 =.000051

Ttroducing these velues in eguztion 53 of the reduced cernal
forces, it is easy to prowve that:

# Pischber " Theorie undéd Fraxis der Schalenkonstruktionen®™
by Yilheln Exmst und Schn. Berlin und Iunchen. 1967

« Fublished
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2 "
7 =
B, = 0,3375 (1=1)(1- £) - 0.5480 (1-P) + 0.4005 (1-F”)
40,3375 0% (1=39)
He = % (5.5675 + 1.35001° g% - 2,7823 9% g% - 1.4053 gt gk
2 .
n, = f‘L{D.EE-].E (1- }J - 1,6200% % + 1.6694 ¥+ o.eu38 rﬁ_gBJ
The real internal forces N, HF and HI.F are, according to egua-
tion 3, given by:
N, =8, .::osﬁ;' cosgl HF =n. cosol/ cus'E'_'z and Ty = -

Enowing further that

then of and {5, and the corresponding cos—values reguired for ecaleulat-

inz Hx and ﬂ:r can be easily deterained.
The calculated intermal forces in the shell are as showm in Tig.

gai g

1
Il|’ |




The lonzitudinal beans at toe straizht edges of the coneoid (Fig.
ATIT-112) earry the coaponents of the normal forces HF. The wvertical

contioucus bean (spans 4 ms)

l ] B
carries the vertical cooponent —. L4 [ g
. assumed depth of horiz.beam

¥ cf the normal force N 10 ¢m.

7o
where ¥ =n_ %tan ﬁa.
o
The horizontal beans ( spans Tie s.1.B.22
FmSL33L
B ms ) carry the horizcotal
component H of the normel .

J3d1 4
force N, ; - .iﬂ |E‘i\a';'~

wheres H = .n.:,.

The shearing foree rrn = :5‘,_?
acting along the straizht edge Pig, XII-112
of the shell is small and may be neglected,

The peactions of the horizontal beam will be resisted by the tie
of the arches.

The diaphragm of the conoid is cozposed of two arches with a tie.
The shearing forces transmitted to the flat arch are very small and
hence, it does not need any design. The deep arch with the tie (Fig.
¥IT-113) carries its own weight + welght of flat arch and tie G +
the shearing forces HH = T transmitted to it from the shell (com-
ponents H and V), '

rsa'% j: a2 2 §a s
¥ E ‘*%EJ“Z?T

Y A
H
" | v\ @
*f iEI
Fig, £Ii-113

“he vending moments and normal forces in the deep arch are gene-
»ally small that 1ight arches are normally sufficient. The statical-
1y indeterminate thrust is alsc Very gmall that the foree 1o the tie

- B6h -
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EL.MASR STEEL FIPES & FITTINGE Cf
CONMOID ROOF OF MAIN STORES

BETA$LS OF REINFERCEMENT




is approxinately equal to the reaction of the herizontal beam only.

Fig. XIT-114 shows the general layout and main-dimensions of a
part of the main stores of El-Nasr Pipes and Fittings Company at Hel-
wan. The mein part of these stores iz~ 92 ms wide and~108 ms long
with one longitudinal and three transverse expansion joints, so that
the store is ddvided into gix blocks each 46 ms (2 x 23 ms) x 36 ms
(4 x 9 ms). It consists of two floors: a ground floor—4,5 ms high
and a top floor~ 9 ms high. '

The ground floor is used as store for the fittings and the small
1light products, while the top floor is used for storing the main pro-
duct oFf the company, the pipes.

The live load on the first floor is prescribed to be & tm..-’mE -
For this reason, it has been l:hﬂ.!ﬂl;. of the golid flat slab type— 4.5
x 4.5 ms. The slab thickness is chosen 25 cms and provided with a 10
ems thick drop panel 2+25 X 2.25 ms. The typical i::clzlamediuta colunns
are 50 x 50 cms and provided with column heads 140 x 140 cns.

The top floor of each block is covered by continuous two-bay co—
noids having a breadth b = 23 ms and a span (a — a_) = 9 ms. The co-
noid is bounded by two arched diaphragms, one deep having a rise h =
445 ms ond one very flat bhaving a rise of 1.0 m only. No horizontal
tie is arranged, and the flat arch acts as a tie for the deep arch.

The thicimess of the comoid slab is 10 cms increased to 15 cas
at the outside edges. It is r_:ei.:;fmmi by one bottom mesh 648 mm/m
except at the free straight edge where it is increased to 5410 om/m.
411 edges are however reinforced by another top mesh 644 10 mm/m. The
top arch is 40 x 45 cns reinforced by 104 16 mwu, the lower arch is
40 x 45 ems at the crown; its top surface is chosen horizontal for
architectural requirements and reinforced by 204F25 pn high grade
steel. The detalls of their reinforcements are shown in Fig. III-115.

This interesting structure is still under construction.

_3.55_



iu—iy The Hyperbolic Paraboloid
Figure XII-116 shows a shell Iformed according to & hyperbolic

paraboloid surface. Its eguation with respect to toe orthogonal

FIG., XII-116
system of axes %, ¥, % shown in figure III - 117 is given by :

z=xX7 /o 54 )

in which

FIG. XII217

It is easy to mee Shat the 2 — ce — ordinate of any point is
hxy / & b. Hence, the eguation of the surface can be given in the

form 2

2 = —0 xy £{55)

wnich means that
ce=ab/h {28)
A hyperbolic paraboloid may be regarded as a warped surface Iformed
- 366 =



by elewvating or depressing one cozner of a rectangle by a certair
amount ( b ) while the other three corners remain in their original
level. The surface shown in figures XIT-116 and ll? i= formed by two
sets of straight line geperators lying entirely on the surface « The
plan projections on the x — y plane of these generators constitute twe
families of parallel lines which are the characteristic linss of the
surface. .

This surface being determined by two intersecting systems of
Straight lines, ics formwork reguires only straight wood Jjeist gene-
rators. The smooth warped surface may be secured merely by -:-::variug
these joiste with flexible plywood sheathing.

The hyperbolic paraboloid shells have been successfully used in
many different waye to form roofs Biving a striking appearance needed
in such diverse etrTuctures such as banks, churches, restaurents, exhi-
bition and assembly halls... etc. Some of these possibilities are given
by Bemaswamy™ and shown in figure XII-118 a to b . :

The derivatives of equation (66)are

dzfox = y/c, and 22/0F = x/c ) 57
8%2/82° = O . 2%z/azay = 1/c 82z/83° = 0 J
Inserting thana_ values in the membrane condition of eguilibrium ex -
pressed by equation (12), we get

n, =0 > n =0 and B = - Ec/2.(58)

In shallow shells the lpad _w'mE surface is approximately egual to the
Projected load g so that, we may write also

a = = P & b 2 h {59
Thus We arrive at 't-'.hﬂ impﬂrtsnt conclusion H

" A shallow hyperbolic paraboloid submitted to the action of dead loads
develops & state of pure shear, copstant over the whole surface ,and

= Ramaswamy ; " Design and Construction of Concrete Shell Roofe."
- 367 =
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unaccompanied by normal stresses ". Due .1:::- this state of pgtresses ,
the shell will be subject to principal tensile and compressive forces
along the vertical sections forming an angle of 45° with the direc -
tions x and ¥, in the arch = like fibers, there will be compression
while in the inverted arches ten-
gion will arise. Fig., I1i-119. The
absolute value of the principal ten-
sile and compressive forces is egual

to the absolute value of the shearing
force. T_hiamaananl = = n, = nn_a.nd y
Hi = = HE S H:E .

We consider now the arrangement PIG. XI1-119
of the wumbrella roof formed by four
hyperbolic paraboloids resting on four triangular frames (f£ig.XTI-118d)}
along their edges. Taking any one of the hyperbolic paraboloids, say
C ACE, it abute against the adjacent -hyperbolic paraboloide along
the edges OA and OB, Along the two remaining edges AC and BC, it is
supported on frames which are stiff in their plane ocnly. EKach of the
edges is subject to axial forces that may be found by summing up the
shears transferred to them by the shell, their magnitude varies from
zero at the free end and increases gradually to its maximuom value H at

the supported end. So that

H = nxr}. (60 )
in woich Ll.( = a or b ) is the projected length of the edge beam un-
der consideration.

The sense of the forces H depends on the relative .height of the
corner points of any of the wmits of the hypar‘hulic paraboloid roof
(Fig. XI1-120,. If one of the four cormer points 1s gituated lower
( or higher) than the other three, then the resultant of the shearing

forces will act from the higher corner points towards the lower ones.
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FIG, I-120
Reverting agair to the umbrella roof of figure ITI-1184 and

according to the given principles, we find that the corner B is lower
than the other three corners C, 0 end L' and hence the forces in the
edge beams A B and C B are directed downwards from A and C towards E.
Since the supporting column lies at E, then :
dxial forces in A B and C B are compressive, zerc at 4 and C and in-
crease gradualls to their maximum values at BE. Axial forees in C O
ind A4 O are opposite in direction to those in A B and C B and since
they are free at € and A and Bupported at O then the foreces in the
two beams are compressive, zerc at C and A and increase -g-adnallar to
thej,r_uaa:i.mm values at 0. Each of these two edge beams carries the
axial forces transmitted to it from two adjacent hyverbolic parabo-
loids,

If we examine the forces actine in the edge beams of the inver-
Ged umbrells shown in figure XII-115 &, we fin;i that the forces in &4 C
and C O are compressive, zero at 4 and C and maximum at 0. Each of the:
WO edge beams carries the forces from two adjacent elements of +the
roof. The forcesz in 4 B and B C are tensile, zero at B and maximm
at A and C.

The forces acting in the edge beams tend to distort the Prame
formed by them. In ocrder to prevent this, Tiee Jjoining the supporting
columns as shown in figure XTI-118b to g are to be arranged.

I7L -



Since n. and n}r are equal to zero, the own weight of the ridge
beams cannot be resisted by the shell. Therefore, it is necessary that

the ridge beams take care of themselves and pustain their owm weight

as beams supported at the gables.
In order to illustrate the calculations, the statical investi-

gation of some .simple forms will be shown in the following examples.

n qu . - - = .A

Example 1 ,
In this example a hyperbolie .
paraboloid shell supported on
four corner columns, of the form i
Bhown in figure IIT-]12] is presen-
taed, The geometrical data of the

shell are the following :
g =12.0m be0.0nm b= 64m

The specific walue of the load ac-
ting on the shell is

g = 400 kg/n°
The shearing force arising in the
shell due to this lcading is

= - —J:-E.E.E___ .
o, e =3375 ke/m E1G, JII~121

The rib BE C is subject to compression, zero at B and maximum at
C. The horizontal projection of the ~ompressive force at C is given
by By =n._. & = 3375x 12 = 40500 kgs.
Similarly, the horizontal projection of the compressive force in 4 C

1y

at C is HE='nr3'h= 3375 x99 = 30375 Xgs.

Each of the ribs A O and B O ecarry ":m:n'elm,?_.'ntﬂ of +the roof.dence

Kax. horiszontal projection of compression in A0 at 0=2x40500=81000kgs
L] L1 Fi n 1 1] . Bﬂ H.t D-Erﬁﬂ}?ﬁﬂﬁﬂ?ﬁﬂ L

The tensile forces in the tie rods C BEC and C A C are of the same

- F72 -



q.sguitwia as Hy = 40500 kgs and H, = 30375 kgs.

The dimensions of

the edge beans must be sufficient to resist the actinz cozpressive

forces and the bending moments due
to their own weight.

Exa.m:g Iﬂ 2
. Ifn'ure:l.la roof supported on a
single column at the center.(Fig.

XI1-122).
b=4,5m

a = E‘.G o h.: _5..2“.‘

Assume specifiec value of lead :
g = 320 kg/m°

The shedring force in the shell

is given by :

o =- BBE.B6X 45 1
2h 2x 3.2

# —1350 kg/m

AC

o x

1 N

Max. horizontal projection of tenasile force in AD at 0=1350x6x3=16200kgs

" L] L4 ] " "

L]

BO at 0=1350x%.5x2=12150"
CE at B=1350x6.0 =85100 ™
CA at A=1350x.5 =86075 _:!"

" " L "  comp.
an w bl L] Lal
Example 3

For the inverted umbrella
roof with O below 4,C and B
and hawving the same specific
load and dimensions (Fig.XII-
123), the forces in the edge
beams will be of The same ma-—

gnitude but opposite in sense.

Hence

The reduced forces in A O and




E 0 are compressive, with maximum values of 1€200 kg and 12150 kg at
0 respectively. The reduced forces in C B and C 4 are tensile, with ma-
ximn valuee of 810D kgs at B and 6075 kgs at 4 . |

The actual shearing Inrce.in the Bhell ul.ll.'l:lnl'";."i‘xEIP being equal to
the reduced va.'.l.u_n Dy then the actual principal forces N, and K,
are also equal to + Ty . Hence the max. concrete compressive stress
is given by

Og = By / &g (63)

g, is generally very low and the minimum executable thickneas suffi-
cient to protect the steel reinfarcement from rusting ( 6 — 8 cms )
is sufficisnt. _

 The area of the steel reinforcement if it is arranged diagonal-

i1y is :

Ly =04y /0 (&%)
For normal dimemsions of hyperbolie paraboloid roofs 4, 1= low and it
E.B recommended, in such cases, to arrange the reinforcements parallel
toc the edge beams in which case

#E::nnfﬂz 9 . (54a)
Assuming the thickness of the shell slab of example 1 is €& cms, then:
O, = 3375/100 x 6 = 5.63 kg/cm

and the area of the required ru:t.ni‘e:.-:umnt if arranged parallel to the
sidee 1B
' a, = 3375 /\J2 1400 = 1.69 c.f;m
chosen 5 ¢ B mm/m
The actual forces in the edge beams are egqual to
i E /f coadl

in which E is the hordzontal projection of the force in the beam and
@ is the angle between the edge beam and its horisontal projection .

The Tibs must further be checked far bending moments caused by
their own weight, unsymmetrical live loads and the eccentricity of the
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load.( the compressive force is applied through the shell slab at the
lower edge of the beam ).

In order to give an idia sbout the order of these moments , the
internal forces acting on the intermediste rib 4 O of example 35 will
be shown.

Actual max. compressive force in rib A 0O at O = 16200 X 6.8 = 1B360 kgs.
4Assuming the cross-section of beam A O at
O is as shown in figure XIT-124 and decrea—
BeE To zero at A, then average own welight

'mjiiz 1x22x2.5=0.25 t/n. acting at
2

(=]
-

~ L a from © ,

Bending moment due to own weight = 0.25 x 62/3 = 3.0 m &,

The bending moment due to unsymmetrical live load on C C B B is accor-
ding to Parme, given by ( T.h ) in which T is the maximun tension in
the edge beam C B due to live load and h is the height of the parabo-
1niﬂ;

Assuming the live load = 50 kg/m® and h being 3.2 ms, then maximum

T = 8100 x 50/320 = 1.256 tons.

Bending moment due to unsymmetrical load = 1.265 x 3.2 = 4.05 n +
If the shell is continuous as shown dotted, one may assume that half
the bending moment is resisted by the adjacent shells and the other
‘half is resisted by the beam 4 O.

The shearing forces are transmitted +to the beam throuzh the shell slab
dssuming the average depth of the beam ia 25 cms; the bending moment
due to eccentricity of force = 18,36 x 2322 = 2,42 m t. The tosal ben-
ding moment for one single shell :

total M = 3.0 + 4.05 + 2,420 = 9.47 mt
The edge beams C B are to be calculated for a max. tensile force at
O = 8100 kgs plus a bending mnmant.eqnal to this force multiplied by
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the eccentricity from the center of shell slab to the center of <+he ™
edge beam,

Figs. XI1-125 and 126 give the gemeral layout, main dimensicns
and details of reinforcements of the national exhibition halls st El
Hasr city, CGalro. The roof of the halls is composed af a series of

hypervolic paraboloids of the inverted-umbrella type. Each unit of

the series is 25 x 25 ms supported on & single column at the middle,
In order to reduce the bending moments in the intermediate beans, its
cantilevering arms were comnected Gogether by a tie. Frestressing was
used both in the ties and in the tensinn edge beams.
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